
Better Rates for:

Thermal Electrification, Climate, and the Grid

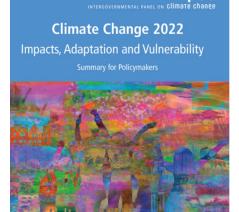
Harvey Michaels

Faculty MIT Sloan Sustainability/System Dynamics Program Director Clean Heat Transition Project Affiliate Environmental Solutions Initiative

Presented to Restructuring Roundtable March 24, 2023

Building energy \rightarrow the toughest leg on the Climate Solution Journey

IOCC


2050 Roadmap - Sector Analysis

Sequestration

Electric

Buildings

NE Heat Pumps are Necessary + Challenging Happening → But Not Fast Enough

- Incentives up to \$10,000 per home, plus \$2000+ IRA
- Small electric rate discounts.
- Advisory support
- > Product screening.

MIT Clean Heat Transition Project:

- Goal: Policy and Business Strategies to Accelerate Heat Decarbonization.
 - Massachusetts and New England as First Case.
 - 4-5% Heat Pump adoption <u>by 2025;</u> current 1% (ME 5%).
 - Thermal efficiency is also important.
- Concerns (work in progress):
 - <u>Rates:</u> Heat pumps more expensive than gas heat < +/- 35F
 But Rates higher than True Cost +/- 95% of the time: Energy and T&D
 - <u>Grid:</u> Heat pumps add 5KW/home to winter grid peak;

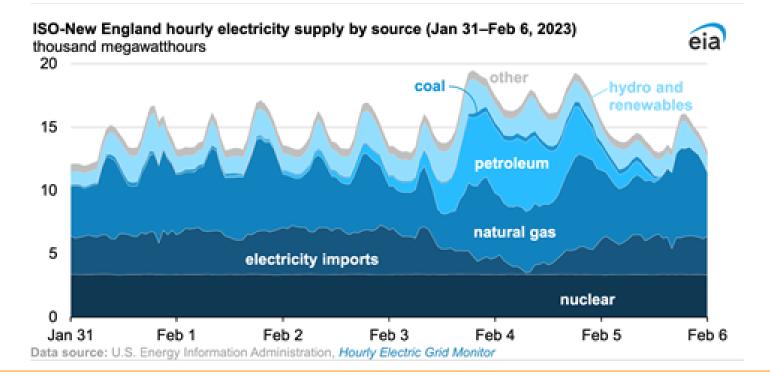
1 kw available. 20% adoption barrier (5 years)

- Equity: Incentives may be Unaffordable; Inequitable at scale.

Opportunity: Most Heat Pump homes also have fossil heat – AC-driven demand.

- <u>But not Deep Retrofit, New Homes, Geothermal low grid impact.</u>
- Workable with Grid at Scale *if off during Demand Peaks.*
- Lower winter emissions (if 85%+ HP)
- Lower operating cost potentially <u>much lower true cost.</u>

John Sterman, MIT Sloan En-ROADS – MIT Climate Pathways Project


The benefits of *Demand Response* programs:

(a.k.a. Virtual Peak Power, or Flexible Load)

- Lower demand/lower price
- Flatten load profile reducing costly generation + emissions.
- Reduce generator market power
- Enhance reliability
- Support renewable power intermittancy

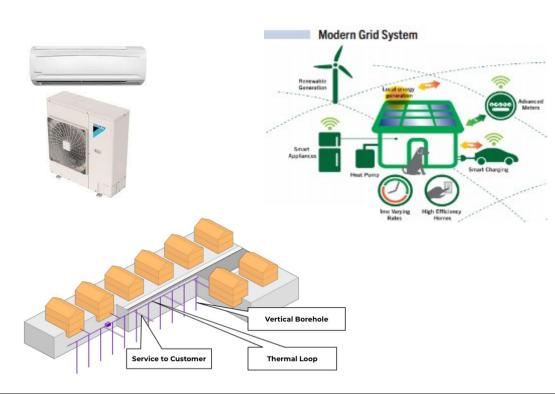
EVERS URCE

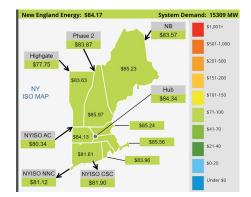
For climate, we need electric prices/rates to heat pumps...

- **For adoption:** ...to be lower than gas heat, almost all winter, below 40F.
- For cost equity: ...not higher/lower than they need to be.
 - But they are higher +/- 95% of the time both Energy and T&D.
 - Also too low on the remaining hours: approx. 6-9 AM, 6-9 PM, coldest days. (not always)

How? Restructure electric rates – *let's consider:*

- <u>Cost-based Reduction to 95% of Winter HP Hours: <40F; IoT/AI enabled</u>
- Expand Connected Solutions DR to Winter HP Winter ICAP
 - Help retail electric industry + communities/CCA's find elegant solutions?
- > Pay for Mass Save with a carbon tax on gas/oil:
 - not electric (as now) at least on electrification. <u>Clean Heat Standard</u>


Also - Site-stored renewable fuels, thermal storage tech, Neighborhood geothermal loops/ GeoGrids



March 24, 2023

Thermal Electrification, Climate, and the Grid *I Wonder; What If; Let's Try!*

Harvey Michaels

Faculty MIT Sloan Sustainability/System Dynamics Program Director Clean Heat Transition Project Affiliate Environmental Solutions Initiative

hgm@mit.edu

