

New England Electricity Roundtable Presentation March 22, 2024

LS Power: An Industry-leading Developer, Operator, and Investor

LSP

LS Power Commitment to New England

1,162 MW operating fleet with additional DER capacity in every state in the region

Renewable Generation

- Hydro
 - 14 projects totaling 125 MW across ISO-NE (part of 41-project Patriot Hydro portfolio)
- Wind
 - Kibby 132 MW in Maine
 - Jericho 12 MW in New Hampshire
- Solar
 - Whitcomb 2 MW in Vermont

Natural Gas Generation

- Ocean State Power 541 MW in Rhode Island
- Wallingford 350 MW in Connecticut

Distributed Energy Resources (DER)

- CPower leader in demand-side energy management solutions provider with 6.7 GW in DER capacity across 27,000+ customer sites
 - 500+ MW in state programs and wholesale markets across all six NE states

EVgo

- FAST CHARGING one of the largest EV charging networks powered 100% by renewable energy, with over 900 locations and 500,000+ customers across 35+ states
 - 100+ chargers across ISO-NE

System Needs Necessitated by Increasing Energy Demands...

Load Growth Driven by Demand from Electrification of Heating and Transportation

- Long-term studies of region indicate **doubling in both electricity consumption and peak demand**, plus a shift to a winter peak (1), (2)
- Still very early stages of integrating zero carbon resources into the supply mix
- Dispatchable, flexible, firm supply is essential to cost-effective decarbonization (1), (3)

System planning in this new paradigm requires scrutiny of historical assumptions and growth mindset

- 1. MA EEA, 2020, Energy Pathways to Deep Decarbonization, https://www.mass.gov/doc/energy-pathways-for-deep-decarbonization-report/
- 2. Schatzki et al, 2022, "Pathways Study", https://www.iso-ne.com/static-assets/documents/2022/03/schatzki-et-al-pathways-final.pdf
- 3. CT DEEP, 2020 Integrated Resource Plan, https://portal.ct.gov/-/media/DEEP/energy/IRP/2020-IRP/Appendix-A3--Modeling-Results.pdf

...Supported by Flexible Thermal Generation for Critical Reliability

Thermal resources are critical for reliability during high load periods and to integrate renewables. More dispatchable, flexible, long-runtime generation will be needed

High Stress Week from E3's 2020 Study⁽¹⁾ of New England Highlights Critical Need for Reliable, Dispatchable, Long-Duration Generation

- Renewables will serve load demand during most hours of the year, but there will be multiday periods with high loads and low renewable generation
 - This will pose a critical reliability challenge
- To cover these periods, thermal generation capacity will continue to provide the region's reliability backbone for years to come ^{(1), (2)}
- Forcing premature retirement of thermal generation will *increase* the challenge of decarbonization by making it more difficult to reliably integrate renewables and maintain resource adequacy ⁽³⁾

152 M=7

 Decarbonizing power gen without gas will increase consumer costs by \$3.7⁽²⁾ to \$19 billion⁽¹⁾ annually

Recognition of System Reliability Requirements is being integrated into Public Policy Conversation

- 2. MA EEA, 2020, Energy Pathways to Deep Decarbonization: A Technical Report of the Massachuset 4s 2050 Decarbonization Roadmap Study
- 3. NREL, 2022, "Examining Supply-Side Options to Achieve 100% Clean Electricity by 2035", Fig 11,

^{1.} E3 & EFI, 2020, "Net-Zero New England: Ensuring Electric Reliability in a Low-Carbon Future", Fig 4-10

Markets and Policies Need to Support Competition

Competitively procuring needed resources and grid services is the most cost-effective way to meet clean energy requirements and save consumers money

Three key questions for the next decade:

- 1. How do we **plan** for a highly decarbonized system that ensures reliable, affordable electricity for consumers?
- 2. How do we design markets to support resources that are needed for reliability?
- 3. How do we build transmission and generation at huge scale, cost-effectively?

Wholesale Energy Market	Wholesale Capacity Market	State Policy
Markets that better reflects system risk, weather uncertainty, and that accurately price the value flexibility	Pricing that supports development and operation of highly reliable, flexible, but seldom used resources	Focus on procuring resources rather than forcing the retirement of less favored ones
Carbon pricing , economy-wide, to align new development and generation with state goals	Capacity accreditation that accurately differentiates between high- and low- quality resources, and doesn't rely on outdated assumptions (e.g. tie benefits)	Ensure competitive transmission flourishes; enable merchant use of utility equipment, right-of-way

Wholesale markets and state policy must evolve to ensure a cost-effective, reliable power system

