AUTHORS #### **ROCKY MOUNTAIN INSTITUTE** Peter Bronski, Jon Creyts, Leia Guccione, Maite Madrazo, James Mandel, Bodhi Rader, and Dan Seif #### **HOMER ENERGY** Peter Lilienthal, John Glassmire, and Jeffrey Abromowitz #### COHNREZNICK THINK ENERGY Mark Crowdis, John Richardson, Evan Schmitt, and Helen Tocco Founded in 2000, CohnReznick Think Energy, LLC is a full-service renewable energy consulting firm specializing in request for proposal (RFP) management, project development support, due diligence advisory, and energy purchasing services. CohnReznick Think Energy has assembled a team skilled in energy, economic, financial, and policy analysis; project management; engineering; technology and resource evaluation; and project development. The team has worked on more than 38 active solar projects representing over 500 MWs of capacity. Since 1982, Rocky Mountain Institute has advanced market-based solutions that transform global energy use to create a clean, prosperous, and secure future. An independent, nonprofit think-and-do tank, RMI engages with businesses, communities, and institutions to accelerate and scale replicable solutions that drive the cost-effective shift from fossil fuels to efficiency and renewables. Please visit http://www.rmi.org for more information. HOMER Energy, LLC provides software, consulting, and market access services for analyzing and optimizing microgrids and other distributed power systems that incorporate high penetrations of renewable energy sources. The HOMER® software is the global standard for economic analysis of sustainable microgrid systems, with over 100,000 users in 198 countries. HOMER was originally developed at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Its developers are now the principals of HOMER Energy, which has the exclusive license. ## **ACKNOWLEDGMENTS** # THE AUTHORS THANK THE FOLLOWING INDIVIDUALS AND ORGANIZATIONS FOR OFFERING THEIR INSIGHTS AND PERSPECTIVES ON THIS WORK: Galen Barbose, Lawrence Berkeley National Laboratory Kristin Brief, Ambri Nicholas Chase, U.S. Energy Information Administration Ali Crawford, Sacramento Municipal Utility District **Cummins Power Generation** Julieta Giraldez, National Renewable Energy Laboratory Allan Grant, Corvus Energy Limited Rob Harris, PowerSecure Solar Eric Hittinger, Rochester Institute of Technology & Aquion Energy Grant Keefe, Distributed Sun Dave Lucero, EaglePicher Lee Kosla, Saft Batteries Paul Komor, Renewable and Sustainable Energy Institute (University of Colorado) Christopher Kuhl, ZBB Energy Corporation Tom Leyden, Solar Grid Storage Marc Lopata, Microgrid Solar Jim McDowall, Saft Batteries Pierre Moses, Make It Right Solar Jeremy Neubauer, National Renewable Energy Laboratory Scott Reeves, EaglePicher Armando Solis, Hanwha Q Cells USA Matthias Vetter, Fraunhofer Institute Ted Wiley, Aquion Energy The authors would also like to thank their respective organizations' internal staff who contributed insights, as well as the utilities and other organizations and individuals who similarly offered input but chose to remain anonymous. The Economics of Grid Defection is the co-authored work of Rocky Mountain Institute, CohnReznick Think Energy, and HOMER Energy. Rocky Mountain Institute thanks Fred and Alice Stanback and the Rudy & Alice Ramsey Foundation for their generous support of this work. ## TABLE OF CONTENTS | 04 | |----| | 09 | | 17 | | 26 | | 37 | | 39 | | | ## **EXECUTIVE SUMMARY** Distributed electricity generation, especially solar PV, is rapidly spreading and getting much cheaper. Distributed electricity storage is doing the same, thanks largely to mass production of batteries for electric vehicles. Solar power is already starting to erode some utilities' sales and revenues. But what happens when solar and battery technologies are brought together? Together they can make the electric grid optional for many customers—without compromising reliability and increasingly at prices cheaper than utility retail electricity. Equipped with a solar-plus-battery system, customers can take or leave traditional utility service with what amounts to a "utility in a box." This "utility in a box" represents a fundamentally different challenge for utilities. Whereas other technologies, including solar PV and other distributed resources without storage, net metering, and energy efficiency still require some degree of grid dependence, solar-plus-batteries enable customers to cut the cord to their utility entirely. Notably, the point at which solar-plus-battery systems reach grid parity—already here in some areas and imminent in many others for millions of U.S. customers—is well within the 30-year planned economic life of central power plants and transmission infrastructure. Such parity and the customer defections it could trigger would strand those costly utility assets. Even before mass defection, a growing number of early adopters could trigger a spiral of falling sales and rising electricity prices that make defection via solar-plus-battery systems even more attractive and undermine utilities' traditional business models. How soon could this happen? This analysis shows when and where U.S. customers could choose to bypass their utility without incurring higher costs or decreased reliability. It therefore maps how quickly different regions' utilities must change how they do business or risk losing it. New market realities are creating a profoundly different competitive landscape as both utilities and their regulators are challenged to adapt. Utilities thus must be a part of helping to design new business, revenue, and regulatory models. Our analysis focuses on five representative U.S. geographies (NY, KY, TX, CA, and HI). Those geographies cover a range of solar resource potential, retail utility electricity prices, and solar PV penetration rates, considered across both commercial and residential regionally-specific load profiles. After considering many distributed energy technologies, we focus on solar-plus-battery systems because the technologies are increasingly cost effective, relatively mature, commercially available today, and can operate fully independent of the grid, thus embodying the greatest potential threat. We model four possible scenarios: - Base case—Uses an average of generally accepted cost forecasts for solar and battery systems that can meet 100% of a building's load, in combination with occasional use of a diesel generator (for commercial systems only) - Accelerated technology improvement— Assumes that solar PV and battery technologies experience more aggressive cost declines, reaching or surpassing U.S. Department of Energy targets - Demand-side improvement—Includes investments in energy efficiency and usercontrolled load flexibility - Combined improvement—Considers the combined effect of accelerated technology improvements and demand-side improvements We compare our modeled scenarios against a reasonable range of retail electricity price forecasts bound by U.S. Energy Information Administration (EIA) forecasts on the low side and a 3%-real increase per year on the high side. FIGURE 1: OFF-GRID VS. UTILITY PRICE PROJECTIONS COMMERCIAL - BASE CASE [Y-AXIS 2012\$/kWh] The analysis yields several important conclusions: - 1. Solar-plus-battery grid parity is here already or coming soon for a rapidly growing minority of utility customers, raising the prospect of widespread grid defection. For certain customers, including many customer segments in Hawaii, grid parity is here today. It will likely be here before 2030 and potentially as early as 2020 for tens of millions of commercial and residential customers in additional geographies, including New York and California (see Figures 1 and 2). In general, grid parity arrives sooner for commercial than residential customers. Under more aggressive assumptions, such as accelerated technology improvements or investments in demandside improvements, grid parity will arrive much sooner (see Figures 3 and 4). - 2. Even before total grid defection becomes widely economic, utilities will see further kWh revenue decay from solar-plus-battery systems. Our analysis is based on average load profiles; in each geography there will be segments of the customer base for whom the economics improve much sooner. In addition, FIGURE 2: OFF-GRID VS. UTILITY PRICE PROJECTIONS RESIDENTIAL - BASE CASE [Y-AXIS 2012\$/kWh] FIGURE 3: COMMERCIAL PARITY TIMELINE FIGURE 4: RESIDENTIAL PARITY TIMELINE motivating factors such as customer desires for increased power reliability and low-carbon electricity generation are driving early adopters ahead of grid parity, including with smaller grid-dependent solar-plus-battery systems that can help reduce demand charges, provide backup power, and other benefits. Still others will look at investments in solar-plus-battery systems as part of an integrated package that includes efficiency and load flexibility. This early state could accelerate the infamous utility death spiral—self-reinforcing upward rate pressures, making further self-generation or total defection economic faster. 3. Because grid parity arrives within the 30-year economic life of typical utility power assets, it foretells the eventual demise of traditional utility business models. The "old" cost recovery model, based on kWh sales, by which utilities recover costs and an allowed market return on distribution networks, central power plants, and/or transmission lines will become obsolete. This is especially profound in certain regions of the country. In the Southwest across all MWh sold by utilities, for example, our conservative base case shows solar-plus-battery systems undercutting utility retail electricity prices for the most expensive onefifth of load served in the year 2024; under more aggressive assumptions, off-grid systems prove cheaper than all utility-sold electricity in the region just a decade out from today (see Figure 5). Though many
utilities rightly see the impending arrival of solar-plus-battery grid parity as a threat, they could also see such systems as an opportunity to add value to the grid and their business models. The important next question is how utilities might adjust their existing business models or adopt new business models—either within existing regulatory frameworks or under an evolved regulatory landscape—to tap into and maximize new sources of value that build the best electricity system of the future at lowest cost to serve customers and society. These questions will be the subject of a forthcoming companion piece. FIGURE 5: U.S. SOUTHWEST 2024 OFF-GRID COMMERCIAL SCENARIOS VS. ESTIMATED UTILITY DECILES [Y-AXIS - 2012\$/kWh] ## INTRODUCTION Utilities in the United States today face a variety of challenges to their traditional business models. An aging grid makes substantial investment in maintaining and modernizing system infrastructure a looming need. Meanwhile, myriad factors are making kWh sales decay a real concern, threatening the traditional mechanism by which regulated utilities recover costs and earn allowed market returns associated with infrastructure investment, as well as threatening the business model for all other types of utilities. These factors include: - The falling costs and growing adoption of distributed generation (DG) and the prevalence of net-metering policies for integrating that DG - Flat or even declining electricity demand, driven in part by increasing energy efficiency efforts as well as expanding demand-side strategies to manage electricity consumption In addition, the electricity sector faces increasing social and regulatory pressures to reduce the carbon intensity and other environmental and health impacts of power generation. Together, these forces undermine the "old" model of central power generation, transmission, and distribution. In particular, the combination of increasing costs and declining revenues creates upward price pressure. Yet higher retail electricity prices further prompt customers to invest in efficiency and distributed generation, creating a self-reinforcing cycle sometimes known as the utility death spiral (see Figure 6, page 12). The idea of a utility death spiral, while not new, is increasingly relevant in its potential reality. Once upon a time, the utility death spiral was considered a potential outcome of efficiency. The growth of grid-connected distributed generation later added to death spiral concern. And while some customers have more choice than others, the trend of increasing options for electricity supply is likely here to stay. Now, there's also a fundamentally different growing threat and emerging opportunity wrapped up into one: combined distributed generation and energy storage. Other challenges, such as DG alone and energy efficiency, still maintain customers' grid dependence. Combined DG and storage, and in particular, solar-plus-battery systems, give a customer the option to go from grid connected to grid defected—customers could secede from the macro grid entirely. Utilities have recently acknowledged this day could come. The Edison Electric Institute's January 2013 report, *Disruptive Challenges*, ¹ noted: Due to the variable nature of renewables, there is a perception that customers will always need to remain on the grid. While we would expect customers to remain on the grid until a fully viable and economic distributed non-variable resource is available, one can imagine a day when battery storage technology or micro turbines could allow customers to be electric grid independent. Two mutually reinforcing accelerants—declining costs for distributed energy technologies and increasing adoption of those technologies—are rapidly transforming the electricity market in ways that suggest grid parity (i.e., economic and technical service equality with the electrical grid) for solar-plusbattery systems is coming sooner than many had anticipated. #### FIGURE 6: PRESSURE ON TRADITIONAL UTILITY BUSINESS MODELS ## DECLINING COSTS FOR DISTRIBUTED ENERGY TECHNOLOGIES #### Trends for Solar PV The distributed U.S. solar industry has experienced robust growth in recent years, delivering an average annual installed capacity increase of 62% from 2010 to 2012.² Lower hardware costs (largely thanks to the collapse in PV module prices) and the rapid expansion of third-party financing for residential and commercial customers have fueled this growth. We expect solar PV's levelized cost of energy (LCOE) to continue to decline through 2020 and beyond, despite both the likely end of the residential renewable energy tax credit and the reduction (from 30% to 10%) of the business energy investment tax credit in 2016. Further drops in upfront costs per installed Watt and additional improvements in solar PV finance (i.e., reduced cost of capital) will help drive the continued declines in solar PV's LCOE. ## FIGURE 7: OPPORTUNITY SPECTRUM FOR ELECTRICITY END USERS #### Trends for Battery Technology Electric vehicle (EV) market growth has driven the lithium-ion (Li-ion) battery industry's recent expansion. Though it lags behind the growth of the solar PV market, it has still been significant in recent years. Coupled with greater opportunities for ongrid energy storage, including those enabled by FIGURE 8: U.S. DISTRIBUTED PV INSTALLATIONS -ACTUAL AND PROJECTED² [Y-AXIS ANNUAL INSTALLED CAPACITY - MW] FIGURE 9: HISTORICAL PV PRICES3 [Y-AXIS 2012\$/W_{dc} - INSTALLED] regulations such as the Federal Energy Regulatory Commission's (FERC) Order 755 and California's AB 2514, battery demand is surging. Opportunities in both the vehicle and grid markets will continue to drive the energy storage industry for the foreseeable future, yielding lower costs for batteries for mobile and stationary applications. FIGURE 10: U.S. CUMULATIVE SALES OF PLUG-IN **ELECTRIC VEHICLES** [Y-AXIS CUMULATIVE SALES BY MONTH] FIGURE 11: HISTORIC BATTERY PRICES FERC Order 755 mandates that frequency regulation resources are compensated for the actual quantity of regulation provided. This makes fast-ramping resources, such as batteries, more competitive in this service market. California AB 2514 requires the three investor-owned utilities in California (Pacific Gas & Electric, Southern California Edison, and San Diego Gas & Electric) to expand their electricity storage capacity and procure 1,325 MW of storage by 2020. [&]quot; Historical cumulative sales trend of U.S. plug-in electric vehicles from December 2010 through August 2013. Based on data from the Electric Drive Transportation Association (http://electricdrive.org/index.php?ht=d%2Fsp%2Fi%2F20952%2Fpid%2F20952) and HybridCars.com (http://www.hybridcars.com/market-dashboard/). Accessed January 3, 2014. Adapted from Mario Roberto Duran Ortiz/Creative Commons (http://commons.wikimedia.org/wiki/File:US_PEV_Sales_2010_2013.png). #### Support Technologies Unlock More Value The evolution of support systems—including improved energy systems controls—is progressing apace. Synergistically, these controls have improved the value proposition of solar PV and batteries, thus creating further demand. In addition, smart inverters have seen price reductions and continue to offer new capabilities, unlocking new opportunities for their application and the increased integration of distributed energy resources.^{4, iii} Given the fast-moving technology landscape, we took a conservative view that represents steady progress and is aligned with published projections. However, with high innovation rates in solar, storage, and support technologies, it is conceivable that we underestimate progress in our base case. ## FIGURE 12: SOLAR INVERTER DEMAND BY SEGMENT^{5, iv} [Y-AXIS INSTALLED CAPACITY - GW_{AC}] The trend in the market is towards intelligent inverters that are dynamic and reactive to the grid. Areas of development include dual on- and off-grid capability; the use of reactive power to control voltage being supplied to the grid; integrated storage; increased reliability, lifespan, and efficiency; and better data capture and display. ## FORCES DRIVING ADOPTION OF OFF-GRID SYSTEMS Based on our research and interviews with subject matter experts, we identified at least five forces driving the increased adoption of off-grid hybrid distributed generation and storage systems: - · Interest in reliability and resilience - Demand for cleaner energy - Pursuit of better economics - Utility and grid frustration - Regulatory changes #### Interest in Reliability and Resilience From severe weather events such as Superstorm Sandy, to direct physical attacks on grid infrastructure in Arkansas and Silicon Valley,⁶ to reports on the potential for major system damage from geomagnetic storms, the fragility of the U.S. electric grid is now a nearly constant media topic.^{7,8} As a byproduct of the U.S.'s early advance into the electrical age, our systems are among the oldest on the planet and experience triple the frequency disruptions and ten times the duration of system outages compared to some OECD peer nations such as Germany and Denmark.⁹ In fact, in little over a decade, the U.S. has witnessed some of the most severe power outages in its history (see Table 1, page 14). An increasingly popular solution to these reliability challenges is islandable microgrids, which produce and consume power locally in small, self-balancing networks capable of separating from and rejoining the larger grid on demand. They have a point of common coupling to the grid, and include both generation and loads that can be managed in a coordinated manner. Navigant Research forecasts the microgrid market to reach as high as \$40 billion in the U.S. by 2020.¹⁰ [™] Bloomberg New Energy Finance central demand scenario for solar inverters. Categories are: residential 0–20 kW, commercial 20–1,000 kW. Figures given in AC assuming that AC capacity is approximately 85% of DC. A more extreme example of this trend, yet
similarly connected to reliability and resilience interests, is permanently off-grid buildings. Prior to 2000 off-grid solar installations made up over 50% of solar PV projects. While currently a minute portion of total solar PV sales, such off-grid solar has actually continued its growth in absolute sales (see Figure 13). Though the majority of solar PV was off grid prior to 2000 primarily because it was used in remote locations where grid connection was a more difficult and expensive proposition, we're likely in the midst of a new era of off-grid solar PV (with batteries) within grid-accessible locations. The conversation has shifted from being off grid out of necessity to being off grid out of choice. ## FIGURE 13: CUMULATIVE INSTALLED OFF-GRID PV IN SELECTED COUNTRIES¹² [Y-AXIS MW] ^v Major = those blackouts affecting 1 million or more people. #### Demand for Cleaner Energy Demand for cleaner energy with a lower carbon intensity and softer environmental footprint is on the rise. On the commercial side, major corporations such as Walmart, Costco, IKEA, and Apple are increasingly "going solar." According to the World Wildlife Fund's *Power Forward* report, nearly 60% of Fortune 100 and Global 100 companies have renewable energy targets, greenhouse gas emissions goals, or both. These commitments are driving increased investment in renewable energy, including distributed solar PV. As of mid-2013, cumulative U.S. commercial solar installations totaled 3,380 MW, a 40% increase over the previous year. On the residential side, a 2012 survey of nearly 200 solar homeowners found that even if solar's economics weren't favorable, 1 in 4 would still have chosen to install a solar PV system because of their passion for the environment.16 An earlier survey of more than 640 solar installs—primarily residential found that reducing one's carbon footprint ranked nearly equal with reducing one's energy bill among the top reasons customers chose to go solar.¹⁷ Small residential applications for completely off-grid homes have existed within the United States for many years. These homes and businesses were usually owned by the environmentally-driven consumer, as these buildings had to be energy sippers, because of the then-high cost of renewable energy technologies such as solar, wind, and storage. #### Pursuit of Better Economics Most remote locations without substantial energy infrastructure—like many islands—have been largely dependent on diesel fuel and diesel gensets^{vi} to meet their electrical needs. In places such as Hawaii, Puerto Rico, Alaskan villages, and the U.S. Virgin Islands, expensive imported petroleum (e.g., diesel, fuel oil) provides 68–99% of electricity generation, resulting in retail electricity prices of \$0.36–\$0.50 per kWh or more.¹⁸ Thus on islands and anywhere with high retail electricity prices, there is a strong economic case for reducing the use of diesel fuel as a primary fuel source for electrical power, especially considering that the retail price of diesel in the U.S. has increased 233%-real in the past 15 years.¹⁹ Yet in 2013, liquid fuels were used for nearly 5% of global electricity production, accounting for 948 billion kilowatt-hours of generation, 387 GW of installed capacity, and nearly 5 million barrels/day of fuel consumption. ^{20,21} Further, projections from a new Navigant Research report suggest that annual installations of standby diesel generators will reach 82 GW per year by 2018, ²² signifying a growing opportunity for solar-plus-battery systems. vi The term genset (generator set) is used throughout this analysis to refer to a diesel engine paired with electric generator. #### **Utility and Grid Frustration** While in the past the grid barely warranted a second thought for most people, sentiment is changing. ^{23, 24, 25} This change will only get worse as interconnection delays and red tape, arguments over net metering, and potentially rising prices continue to affect consumers. This reputational erosion poses additional challenges to utilities, above and beyond the increasingly competitive economics of off-grid solutions. For example, in Hawaii, where utility interconnection limitations are making it impossible for many customers to take on grid-connected solar, off-grid development is increasing (see Hawaii call-out box on page 36). Similar desires from individuals for some semblance of energy independence—particularly the right to garner external financing for systems on their private property—led to an unlikely political alliance between conservatives and liberals in Georgia in 2012, as well as current, similarly across-the-aisle political activities in Arizona.²⁶ #### Regulatory Changes Rapid scaling of solar PV, and now grid-connected solar-plus-battery systems, are requiring federal, utility, state, and local regulators to explore new regulatory frameworks. Distributed generation and storage don't fit neatly into the traditional utility model of generation, distribution, and load or existing pricing structures that recover utilities' fixed costs through energy sales. In California, where battery storage targets and incentives have made solar-plus-battery systems more attractive, utilities including Southern California Edison, PG&E, and Sempra Energy have made it challenging for system owners with storage to net meter their power.²⁷ The utilities expressed concern that customers could store grid electricity on their batteries and then sell it back to the grid at higher prices. This upset current customers who have had battery storage for some time and were surprised by the utilities' decisions. The matter impacts both California Public Utility Commission regulation as well as the state's Renewable Portfolio Standard.²⁸ Perceived negative outcomes from regulation can drive customers, who desire solar PV and batteries for other factors, to pursue off-grid solutions. In addition, incentives to promote storage could accelerate battery price declines, thereby increasing uptake of off-grid solutions. Several pro-storage regulations have recently been enacted (see box below). While they were primarily created with grid connectivity in mind, the overall development of the storage market and accompanying controls and other integration systems likely will lead to more robust and affordable off-grid storage applications. FERC Orders 755 and 784: These orders opened the grid to storage by defining grid-level use and accounting for storage systems by favoring fast-reacting battery systems for frequency regulation and ancillary services. Grid operators thus gained a powerful tool to maintain power quality. While these tools are utility-scale now, these orders may someday be the foundation for residential-based frequency regulation and ancillary services provision. AB 2514: California's legislature mandated an aggressive storage target of 1.3 GW by 2020. The bill includes a provision preventing utilities from owning more than 50% of statewide energy storage and allowing consumer-owned or -sited grid-connected storage to count toward the overall goal. AB 327: This bill ensured that net metering will continue. Amendments to the bill eliminated the cap on the number of net-metered systems. The CA Public Utilities Commission (PUC) will now be tasked with determining how net metering is affecting the current rate model and how future rate-making policy will address reliability and freedom to generate electricity. Self-Generation Incentive Program: California provides a subsidy for fuel cells, biogas digesters, and various forms of energy storage. A roughly \$2.00/Watt credit for energy storage systems has created the initial momentum for integrated solar-plus-storage solutions. ## **ABOUT THIS STUDY** #### **PURPOSE** Until recently, solar-plus-battery systems were neither technically robust nor economically viable. But the dual trends of declining costs for distributed energy technologies and accelerating maturity and adoption rates of those technologies are changing that. In fact, recent media, market analysis, and industry discussions have suggested that low-cost solar-plus-battery combinations could enable total defection from the electric grid for a growing population of energy users. Yet, quantitative analysis supporting these claims has been limited. We sought to fill that gap, exploring a central fundamental question: ### WHERE AND WHEN WILL SOLAR-PLUS-BATTERY SYSTEMS REACH GRID PARITY IN THE U.S., ENABLING COST-EFFECTIVE CUSTOMER DEFECTION FROM UTILITIES? This report neither promotes nor discourages defection. It rather models current market trends and forecasts to identify where and when grid defection *could* happen, so that all stakeholders can consider its implications and plan a path forward accordingly. - "Relevant studies include Change and choice: The Future Grid Forum's analysis of Australia's potential electricity pathways to 2050, by Australia's CSIRO Energy Flagship (https://publications.csiro.au/rpr/download?pid=csiro:EP1312486&dsid=DS13) and Economic Policies for Using Storage to Enable Increased Renewable Energy Grid Integration, by Japan's Research Institute of Economy, Trade & Industry (RIETI) (http://www.rieti.go.jp/jp/publications/dp/09j001.pdf). - viii Carbon considerations were based on the emissions of the system, not a full life-cycle assessment of the system's raw materials derivation, construction, use, and end-of-life dynamics. Low-to-no-carbon emission systems were desired due to assumptions of an increasingly carbon-constrained world, via regulations or other factors. - ¹⁸ Batteries and solar are separately in wide use today, but not in combination in fully off-grid systems for developed world buildings with typical loads. However, considered separately (e.g., on-grid solar PV and lithium-ion battery packs for electric vehicles) their total implementation is over 400,000 in U.S. markets (~350,000 for distributed PV and ~70,000 EVs as of November
2013). #### WHY SOLAR-PLUS-BATTERIES? Our when-and-where question focused specifically on the combination of solar PV plus battery energy storage. We initially considered a range of possible technologies, but ultimately filtered our choices by several criteria. The chosen technology combination should be: - Zero or very low carbon^{viii} - Commercially available^{ix} - Technologically advanced/mature - Capable of full grid independence (no electric and natural gas connection required) Solar-plus-battery quickly emerged as the most promising combination. In addition, the availability of product cost forecasts and technical analysis allowed us to make a reasonable cost and service comparison to retail electric service. #### ANALYTICAL APPROACH We conducted our analysis across five different locales (city or county). For each, we considered load profiles for both commercial and residential customers, a reasonable range of future utility retail price assumptions, and different scenarios that account for current solar-plus-battery cost trajectory forecasts as well as accelerated technology improvements and demand-side improvements (i.e., efficiency and user-controlled load flexibility) that could positively affect the economics of solar-plus-battery systems, potentially accelerating the timing of grid parity. We analyzed potential off-grid solar-plus-battery operations, sizing, and economic value using the HOMER software, an energy system optimization tool designed to find the lowest-cost hybrid power system to meet an electrical demand. Varying the parameters and assumptions in the model can determine an optimal system configuration to meet specified performance requirements. HOMER's optimization ranks the simulated systems by net present cost (NPC), which accounts for all of the discounted operating costs over the system's lifetime. We used the HOMER model to determine NPC, LCOE, and annualized cost of energy for solar-plus-battery systems, which we compared to the same parameters for the same load serviced by the local electric utility. #### Geographies Our U.S.-specific analysis focused on five locations: - Westchester County, New York^x - Louisville, Kentucky - San Antonio, Texas - Los Angeles County, California - Honolulu, Hawaii We chose these locations because they cover a representative range of conditions that influence grid parity, including annual solar resource potential, retail electricity prices, and currently installed distributed PV (see Figure 14). Though not a primary driver of solar-plus-battery grid parity, the degree of utility regulation also varied. Three locations—Westchester County, NY, San Antonio, TX, and Los Angeles County, CA—are in significantly (NY and TX) or partially (CA) deregulated electricity markets.^{xi} Two locations—Honolulu, HI, and Louisville, KY—are in regulated territories. FIGURE 14: PROFILES OF GEOGRAPHIES | | WESTCHESTER, NY | LOUISVILLE, KY | SAN ANTONIO, TX | LOS ANGELES, CA | HONOLULU, HI | |-----------------------------------|-----------------|----------------|-----------------|-----------------|---------------| | INSOLATION
(kWh/m²/day) | 4.5 kWh | 4.5 kWh | 6 kWh | 6 kWh | 5.5 kWh | | 2012 AVG RETAIL
PRICE (\$/kWh) | \$0.15-\$0.20 | \$0.06-\$0.08 | \$0.05-\$0.09 | \$0.09-\$0.17 | \$0.34-\$0.41 | | INSTALLED PV
(MW) | 122.02 MW | 2.92 MW | 131.16 MW | 2074.53 MW | 27.33 MW | | MARKET
STRUCTURE | Deregulated | Regulated | Deregulated | Deregulated | Regulated | ^x In metropolitan New York City area. ^{XI} San Antonio is a vertically integrated municipal utility in a wholesale power region; Los Angeles has both a municipal and investor-owned utility, but uses the wholesale market for most generation. #### **BASE CASE** #### **Load Profiles** We modeled both commercial and residential load profiles specific to the regional climate for each of the five locations. For the commercial load profiles, we considered a generic ~43,000-square-foot, 4-story hotel. For the residential load profiles, we considered a ~2,500-square-foot detached single family home. For the base cases, we modeled both profiles with solar-plus-battery systems sized to meet 100% of annual demand, and for the commercial profiles, also a smaller solar-plus-battery system with a standby diesel generator.xii All scenarios were modeled to provide 100% load reliability during a typical meteorological year. Reliability metrics for off-grid systems are not perfectly transferable to grid reliability due to differences in system operations and the nature of the vulnerabilities that face each system. #### **Utility Retail Price Assumptions** Our modeling uses two projections—a lower and upper boundary—to create a 'wedge' of possible future utility electricity retail prices. Information from the U.S. EIA helped determine both boundaries. Note: these price assumptions do not take into account specific price structures in a region that can greatly influence the economics due to off-peak, mid-peak, and peak retail prices per kilowatt-hour. The lower boundary uses EIA regional retail price projections extrapolated from 2012 to 2050 based on historical investment cycle averages. The upper boundary uses an annual price increase of 3%-real based on more recent capitalization trends. For the period 2004–2012, commercial and residential retail real (inflation-adjusted) prices annually rose an FIGURE 15: STATE AVERAGE U.S. COMMERCIAL RETAIL RATES [Y-AXIS ¢/kWh] FIGURE 16: STATE AVERAGE U.S. RESIDENTIAL RETAIL RATES [Y-AXIS 6/kWh] xiii Diesel generators are much more common in commercial buildings compared to residential buildings, so we excluded them from our residential analysis. average 2.7% and 2.9%, respectively, while rates in the geographies we looked at increased more than 3%-real during the period 2010–2012 (see Figures 15 and 16). Until such trends change, a 3%-real per year price increase should represent a reasonable upper boundary for our analysis. There is significant evidence that similarly high rates of retail electricity price increases will continue. For instance, during the seven-year period 2005–2012, low and even negative load growth contributed to rising prices. During 2006–2010, annual average load growth across the U.S. was just 0.5%. Since 2010, it has been -0.7%. Such flat or declining load growth may well be the new norm. In addition, the 2012 Ceres report *Practicing Risk-Aware Electricity Regulation* noted that "if the U.S. utility industry adds \$100 billion each year between 2010 and 2030"—based on the Brattle Group's estimate that simply maintaining the U.S. electric grid's aging infrastructure will require \$2 trillion in investment over 20 years—"the net value of utility plant in service will grow [to]... a doubling of net invested capital.... This growth is considerably faster than the country has seen in many decades." This appears especially true in the near term as distributed energy and efficiency impacts and ongoing expenditures on grid reliability, modernization, and environmental controls put upward pressure on prices. See Table 2 for a summary of lower and upper bound price projections for each geography's electric utility.xiii Table 2: Electricity Retail Price Projections xiv Since the Energy Information Administration does not provide a specific percentage change for Hawaii, rates were calculated from average diesel price projections given by the EIA (2011–2015). xiii Additional information and background modeling assumptions can be found in Appendices A, B, C, and E. #### Solar-Plus-Battery Base Case Assumptions Our solar-plus-battery base case included projections for installed cost of solar PV systems, batteries, and cost of capital.xv #### Solar PV We undertook a thorough literature review to develop solar PV cost projections for customer-owned systems (vs. third-party arrangements) through 2050 (see Figures 17 and 18) and ultimately averaged four datasets:xvi - 1. NREL Strategic Energy Analysis Center³¹ - 2. Bloomberg New Energy Finance (BNEF) Q2 2013 PV Market Outlook32 - 3. Environmental Protection Agency (EPA) Renewable Energy Costs Database³³ - 4. Black & Veatch (B&V) Cost and Performance Data for Power Generation Technologies³⁴ FIGURE 17: COMMERCIAL INSTALLED PV COST FORECASTS WITH RMI PROJECTIONS [Y-AXIS 2012\$/W_{dc} - INSTALLED] FIGURE 18: RESIDENTIAL INSTALLED PV COST FORECASTS WITH RMI PROJECTIONS $[Y-AXIS 2012\$/W_{dc} - INSTALLED]$ xv Additional information on solar PV and battery cost data can be found in Appendix A. xvi These four sources proved to have the most reliable data available, both with regard to quantity and quality. Other datasets were considered but ultimately excluded from our analysis either because they had limited data points or were significantly divergent relative to current market costs (i.e., excessively high projections relative to present day installed costs). #### **Batteries** Our base case model uses a lithium-ion (Li-ion) battery to provide energy storage. We focus on Li-ion batteries because there is the most data on current and future pricing for this set of chemistries. Li-ion batteries are the clearly preferred chemistry for portable and vehicular applications. For stationary applications, such as what this analysis considers, there are many other chemistries under development. We don't focus on them because there is less data available about them—this doesn't alter our fundamental points and conclusions, and in fact disruptive new developments in battery technology could only accelerate the time frames for reaching grid parity with solar-plus-battery systems. We based our battery price projections on data from the EIA,³⁵ Bloomberg New Energy Finance,³⁶ and Navigant Research.³⁷ All of these projections employ a Li-ion battery learning curve derived from historic and projected consumer electric vehicle (EV) production.^{xvii} These projections were applied to stationary Li-ion batteries with some modification to
account for the differences between battery packs for stationary and mobile applications.³⁸ ### FIGURE 19: BATTERY PRICE PROJECTIONS [Y-AXIS 2012\$/kWh] #### Cost of Capital Costs of capital can have a substantial influence on customer-facing costs. Our base case model uses separate NREL-derived³⁹ capital costs for residential and commercial systems.^{xviii} Importantly, solar PV systems (and, we expect, batteries in due course) are gaining access to cheaper sources of bulk capital and are expected to continue to enjoy that access. FIGURE 20: COST OF CAPITAL COMPARISON [Y-AXIS INTEREST RATES] The EIA Li-ion trend was significantly more conservative than similar, yet shorter term, Li-ion projections available from BNEF and Navigant. To the best of our knowledge from speaking with analysts, differing outlooks on the U.S. and global EV market largely drive these differences. ******IThe projected reductions in the residential cost of capital are largely predicated on the expansion of scalable homeowner financing products. The projected reductions in the commercial financing costs are based upon the expansion of several improved host-financing options to include green bonds and property assessed clean energy (PACE) programs. #### **BEYOND BASE CASE** #### Solar-Plus-Battery Technology and Demand-Side Improvement Assumptions Our base case scenario framed the possibility for solar-plus-battery systems to reach grid parity under current trajectories—declining costs and increasing adoption rates—with no radical, disruptive improvements or other developments. We considered four scenarios in total, including three scenarios that would accelerate the timing of grid parity: - 1. Base Case (BC) - 2. Accelerated Technology Improvement (ATI) - 3. Demand-Side Improvement (DSI) - 4. Combined Improvement (CI) #### **DEMAND-SIDE** The accelerated technology The demand-side improvement The combined The base case improvement scenario considers the scenario considers the impact of improvement scenario scenario is built upon full implementation of cost-effective impacts of sharply decreased total applies the lower-cost generally accepted installed PV costs along with more energy efficiency and user-controlled technologies considered cost trajectories for all aggressive battery price projections. load flexibility to shift the load profile, in the accelerated technologies involved. especially during an allowed period of technology improvement It examines the cost capacity shortage. scenario, coupled with of entirely off-grid The U.S. Department of Energy's the more efficient and solar-plus-battery SunShot Initiative⁴⁰ has goals of \$1.50/ Bundled investments in DSI and offflexible load profile systems. This scenario watt and \$1.25/watt (in 2010-\$) for grid technologies could be a costmodeled in the demanduses the current effective value proposition well before residential and commercial installations. side improvement industry projections respectively, by 2020. These SunShot standalone systems without DSI are scenario. for solar PV costs and goals were included as the PV effective. battery costs shown This scenario explores costs in our accelerated technology in Figures 17, 18, and improvement scenario. Efficiency the same bundled 19. These represent We used efficiency measures profiled investment strategy as a conservative **Batteries** by the Lawrence Berkeley National the previous scenario, view of incremental We conducted a range of interviews Laboratory in its 2008 report U.S. but assumes that progress with with energy storage experts from Building-Sector Energy Efficiency aggressive DOE cost existing solar PV and Potential. major national laboratories, energy targets are met. battery technologies. storage system integrators, and Under the base Load flexibility battery technology companies. Our case scenario, we Demand management capabilities interviews yielded a range of price assume there are no projections that varied between \$49 that enable consumers to shift radical improvements and \$300 per kWh. To model the their load profile in response to in technology battery for the accelerated technology resource availability also reduce performance or costs. improvement scenario, we took the the necessary size of the system. target battery price of \$125/kWh, well In the residential systems only, we within our interview price range, set by modeled load management as a 2% the U.S. Department of Energy EERE capacity shortage. This requires load management^{xix} for approximately 170 Vehicle Technologies Office to be consistent with our use of the SunShot hours spread over many days over PV price targets. the course of the year, typically in the winter months when the solar resource is poorest. Table 3: Solar-Plus-Battery Scenario Descriptions xix A more detailed explanation can be found in Appendix B. | | COMMERCIAL | | | | | |---------------------------------------|--|--|--|--|--| | | Base Case | Accelerated
Technology Improvement | Demand-Side
Improvement | Combined
Improvement | | | PV Cost
[\$/W] | Average of selected forecasts | Straightline DOE 2020 Sunshot target of \$1.25/W for all years | Average of selected forecasts | Straightline DOE 2020
Sunshot target of
\$1.25/W for all years | | | Li-ion Battery
Cost [\$/kWh] | Average of selected forecasts | Straightline DOE target of \$125/kWh for all years | Average of selected
Forecasts | Straightline DOE target
of \$125/kWh for all
years | | | Efficiency
Measures | No change in electric consumption over time | No change in electric consumption over time | 34% reduction in
electric use at a cost of
\$0.029/kWh | 34% reduction in
electric use at a cost of
\$0.029/kWh | | | Retail Electricity
Price [\$/kWh]* | Range: EIA projections (low) to 3% increase (high) | | | | | | | RESIDENTIAL | | | | | |---------------------------------------|--|---|---|--|--| | | Base Case | Accelerated
Technology Improvement | Demand-Side
Improvement | Combined
Improvement | | | PV Cost
[\$/W] | Average of selected forecasts | Straightline DOE 2020 Sunshot
target of \$1.50/W for all years | Average of selected forecasts | Straightline DOE 2020
Sunshot target of
\$1.50/W for all years | | | Li-ion Battery
Cost [\$/kWh] | Average of selected forecasts | Straightline DOE target of \$125/kWh for all years | Average of selected forecasts | Straightline DOE target
of \$125/kWh for all
years | | | Efficiency
Measures | No change in electric
consumption over
time | No change in electric consumption over time | 30% reduction in
electric use at a cost
of \$0.029/kWh and 2%
load flexibility | 30% reduction in
electric use at a cost of
\$0.029/kWh | | | Retail Electricity
Price [\$/kWh]* | Range: EIA projections (low) to 3% increase (high) | | | | | Table 4: Solar-Plus-Battery Commercial and Residential Scenario Assumptions #### A Note on Pre-2020 Results Our accelerated technology improvement scenario (and by extension, our combined improvement scenario) uses aggressive 2020 cost targets based on goals established by the U.S. Department of Energy. As these goals may be achieved in many different ways (e.g. new chemistries, supply-chain innovations, etc.) it was not possible to create a year-over-year representation of the improvement in technology before 2020 that would yield these costs. For this reason, the results for our accelerated technology improvement and combined improvement begin in 2020, and extend as possible cost targets beyond 2020. Due to the high innovation rates for both solar PV and batteries, it is conceivable that even these aggressive cost estimates underestimate the potential decline in component costs. ^{*}Grid parity calculated when LCOE intersected upper bound (3% increase) of projected retail electricity price ## RESULTS Our analysis for the base case found that solar-plus-battery grid parity is already here or imminent for certain customers in certain geographies, such as Hawaii. Grid parity will also arrive within the next 30 years (and in many cases much sooner) for a much wider set of customers in all but regions with the cheapest retail electricity prices. By 2050, we expect solar-plus-battery LCOEs to reach \$0.33–\$0.63 per kWh for residential systems and \$0.16–\$0.22 per kWh for commercial systems in our base case. These ranges were relatively narrow, so prevailing retail electricity prices in each geography proved the strongest influence on grid parity's timing, which we pinpointed as the intersection of solar-plus-battery costs with the upper bound of our utility price projections; slower utility retail price increases would push parity further into the future. It is important to note that these results are based on average load profiles; we might expect some minority of customers in each geography to see favorable economics much sooner. #### **COMMERCIAL APPLICATIONS** For commercial solar-plus-battery systems with a standby generator, grid parity is already here in Hawaii under all modeling scenarios. In other regions with high commercial retail electricity prices, such as the Northeast (Westchester County, NY, in our analysis), these systems will potentially become competitive with retail prices within the next ten years or so (as early as 2025). And in all regions, even those with the cheapest electricity—represented by Louisville, KY, and San Antonio, TX, in our
analysis—parity will happen within the next 30 years under most modeling scenarios. Commercial solar-plus-battery-only systems without a diesel genset will reach grid parity later—the 2030s for Westchester and Los Angeles, and even later for San Antonio and Louisville. However, in Hawaii these zero-emissions systems will reach grid parity by 2015. This shift in results underscores the large influence of battery costs. Adding a standby generator to a solar-plus-battery system dramatically reduces the capital required for the battery bank, bringing grid parity sooner. #### COMMERCIAL PARITY TIMELINE #### FIGURE 21: COMMERCIAL BASE CASE SCENARIOS The following graphs show a wedge of utility electricity prices against the LCOE of solar-plusbattery systems for commercial customers with and without a diesel genset. All graphs in 2012\$/kWh. Retail Electric Price Range Levelized Cost of Energy --- Levelized Cost of Energy (without Genset) #### HONOLULU, HI \$1.40 \$1.20 \$1.00 \$0.80 \$0.60 2015 \$0.40 \$0.20 \$0 2050 2018 2042 2046 2014 2022 2026 2030 2034 2038 #### LOS ANGELES, CA #### SAN ANTONIO, TX #### LOUISVILLE, KY #### WESTCHESTER, NY #### **RESIDENTIAL APPLICATIONS** Solar-plus-battery systems reach grid parity further into the future for residential applications, often by 5 to 10 years or more. Residential systems will reach grid parity as early as the early 2020s in Hawaii, late 2030s in Los Angeles, and late 2040s in Westchester in our base case. In Louisville and San Antonio, residential systems did not reach grid parity within the 2050 time horizon of our analysis. However, just as a diesel generator accelerated grid parity for commercial systems, integrating demandside improvements similarly accelerated the timeline for reaching grid parity. In Hawaii it could arrive in the next 1 to 2 years, in Los Angeles by the early 2020s, and in Westchester by the late 2020s. Since we constrained the size of residential solar arrays, the LCOE trajectories for residential applications proved far more dependent on battery prices (See Figure 22). This makes demand-side improvements much more valuable for residential systems (See Figure 23), since efficiency lowers both peak and total demand, allowing downsized battery banks. FIGURE 23: 2014 RESIDENTIAL CAPITAL COSTS [Y-AXIS U.S.\$] Base Case Demand-Side Improvement \$160,000 \$140,000 \$120,000 \$100,000 \$80,000 \$60,000 \$40.000 \$20,000 \$0 San Antonio Honolulu Los Angeles Louisville #### RESIDENTIAL PARITY TIMELINE #### FIGURE 24: RESIDENTIAL BASE CASE SCENARIOS The following graphs show a wedge of utility electricity prices against the LCOE of solar-plusbattery systems for residential customers. All graphs in 2012\$/kWh. Retail Electric Price Range Levelized Cost of Energy #### HONOLULU, HI #### LOS ANGELES, CA #### SAN ANTONIO, TX #### LOUISVILLE, KY #### WESTCHESTER, NY # ACCELERATED TECHNOLOGY IMPROVEMENTS AND DEMAND-SIDE IMPROVEMENTS—A FOCUS ON LOS ANGELES COUNTY Our analysis found that accelerated technology improvements and demand-side improvements, both individually and in combination, accelerated the timeline for solar-plus-battery systems to reach grid parity. Examining the commercial profile in Los Angeles County, CA, provides a useful illustration of this trend across all five geographies. Remember that under the base case and as measured by LCOE, commercial systems in Los Angeles could reach grid parity as early as 2031. #### Accelerated Technology Improvement With accelerated technology improvements—based in part on reaching DOE cost targets for solar PV and battery technology by 2020—commercial systems in Los Angeles could reach grid parity as early as or even potentially before 2020, more than a decade ahead of the base case. #### **Demand-Side Improvement** We analyzed grid parity for integrated investments in demand-side improvements (efficiency and load flexibility) with solar-plus-battery systems using an adapted LCOE where we included the "negawatts served" by efficiency as part of the annual load served by the system. The LCOE of efficiency was held constant at its current cost of 2.7 cents per kWh.^{41, xx} Reducing a customer's load profile through demandside improvements reduces the required system size and the number of kWh that system needs to generate. Relative to commercial retail prices in Los Angeles, demand-side improvements offer customers in the Los Angeles area favorable economics for solarplus-battery systems as early as 2024, six years earlier than the base case. FIGURE 25: GENERATION MIX 2024 LOS ANGELES - COMMERCIAL ### FIGURE 26: LOS ANGELES DEMAND-SIDE IMPROVEMENT xx See Appendix B for a detailed description of our methodology. #### Combined Improvement Our analysis shows that combined improvements could reduce the levelized cost of energy for commercial systems by nearly 50% compared to our base case. Demand-side improvements reduce the size of the system, while technology improvements reduce the upfront cost of that smaller system, thus compounding the reductions in system costs. A commercial system with combined improvements eventually reaches an LCOE as low as \$0.09/kWh. This LCOE makes solarplus-battery systems competitive with today's retail electricity prices in Los Angeles. The Role of Financing: Cost of Capital Comparisons Solar-plus-battery systems are long-term assets, which means they have an upfront capital cost, are likely to be financed at some interest rate, and would be paid off in monthly installments like a car or mortgage. Therefore, any cost-competitiveness comparison to the regular, monthly payments a customer would otherwise make to a utility will be dependent on reasonably low interest rates (5-9%) for solar-plusbattery financing. Today's market has created a variety of financing options for distributed generation (see box 'The Broader Finance Opportunities' page 33). While access to capital at low interest rates is essential to all of these options, we exclusively modeled host-owned systems (i.e., first-party owned). We examined sensitivity to cost of capital by exploring two additional scenarios. The first assumed PV costof-capital improvements aligned with DOE's SunShot goals. The second assumed a fixed cost of capital over time, where solar-plus-battery systems are financed at similar rates to today's PV-only systems, even when the battery's percentage share of capital costs increases substantially. The comparison of these two scenarios illustrate that a higher cost of capital (i.e., no improvements relative to today) for solar-plus-battery systems could postpone the date of grid parity by as much as ten years for commercial applications (See Figure 27). FIGURE 27: LOS ANGELES COMMERCIAL BASE CASE FIXED COST OF CAPITALXXI xxi The dramatic uptick in LCOE for fixed cost of capital is due to the drop in the Investment Tax Credit from 30% to 10% in 2017. In the improving cost of capital alternative case, low-cost capital sources are engaged to continue the downward trend. ## THE BROADER FINANCE OPPORTUNITIES Third-party financing accounted for the majority of residential and commercial systems in the U.S. in 2013. The cost of capital for these third-party financings in 2013 was close to the rate of return that regulated utilities are allowed to receive on their investments (a proxy for the interest rate a utility would pass on to a customer), which are often about 10.5% nominal (about 8.0% real). Modeling a fixed cost of capital^{xxii} is illustrative of two potential scenarios that could come to bear: - 1. A scenario where third-party financing rates do not improve relative to current rates - 2. A scenario where utilities invest in off-grid systems using the current rate of return they are permitted by regulatory statute. Figure 27 (page 33) suggests that utilities would have to accept a lower rate of return (i.e., less profit) to compete with non-utility project developers should third-party financing rates improve at the expected rate. Improvements in lending rates require that solar-plus-battery systems prove to be robust systems in the long term and provide enduring value to the ultimate customer. For PV, if not yet for batteries, the progress toward lower cost of capital appears to be occurring, as 2013 was a landmark year for the emergence of lower-interest financing vehicles. The first publicly known asset-backed securitization (ABS) of \$54 million of SolarCity residential and commercial assets was achieved at 4.8% nominal yield. Also, a \$431 million initial public offering was successfully achieved by NRG Yield, a steady yield- and dividend-oriented equity holding made up of a basket of power assets, including distributed solar systems with implied dividends of 7% by 2015.42 These various and emerging finance vehicles allow renewables investments to tap a much wider investor pool; while a regulated utility would have trouble investing below its regulated rate, many public investors would be thrilled with a long-term, relatively stable return of 4.5–7%. Broader access to these public capital pools will be critical to hit DOE cost of capital targets. and by rate case. The percentages listed reflect typical historic returns allowed to utilities, but should be taken as approximations. Our analysis used a trajectory that was developed from a composite of capital costs reported via industry surveys in 2012, and are not a perfect reflection of current market rates. Our trajectory suggests that capital costs will drop below 8% by 2016 for residential systems and 2017 for commercial systems. ## BEYOND LOS ANGELES—A LOOK AT REGIONAL UTILITY DECILES Though the Los Angeles commercial scenarios provide an insightful set of examples, looking more broadly at U.S. regions according to utility retail electricity sales deciles is revelatory as well. #### **Commercial Applications** We used 2012 utility sales EIA data to identify the distribution between the most expensive and least expensive MWh sold
by utilities in the Southwest and the Mid-Atlantic, the two most populated regions considered in our study. Our Southwest and Mid-Atlantic sample set covered more than 390 TWh and 180 TWh of annual sales, and 25 million and 17 million customer accounts (meters), respectively. Our five study locations were generally in higher-priced regional deciles, xxiii as they are in urban locations within high load pockets where the highest regional prices prevail. Looking ten years out to 2024, we found that solar-plus-battery systems in our base case will become cheaper than grid-sourced electricity from utilities for the most expensive one-fifth of load served. These two deciles represent nearly 800,000 commercial customers in the Southwest and over 450,000 customers in the Mid-Atlantic. With accelerated technology improvements, more than half of all commercial customers in these regions could "beat" retail utility electricity with solar-plus-battery systems. Between the two geographies, this represents over 3 million commercial customers and over \$22 billion in annual utility revenues. One of the major economic advantages of commercial systems over residential systems, other than slightly improved economies of scale via reduction of soft costs for solar PV and unrestricted solar array size, is the assumption of on-site, low-level-use diesel generation. The call-out box "The Honolulu Commercial Case" (page 36) provides more information on diesel generator use. FIGURE 28: U.S. SOUTHWEST 2024 SOLAR-PLUS-BATTERY COMMERCIAL SCENARIOS VS. ESTIMATED UTILITY DECILES [Y-AXIS - 2012\$/kWh] FIGURE 29: U.S. MID-ATLANTIC 2024 SOLAR-PLUS-BATTERY COMMERCIAL SCENARIOS VS. ESTIMATED UTILITY DECILES [Y-AXIS - 2012\$/kWh] Example 2 Deciles determined by MWh sold. Average prices of utilities were used, not specific tariffs. Average prices represent the revenue per energy unit sold, and is more difficult for a utility to alter than any specific customer tariff. #### Residential Applications For residential applications the improvements are less dramatic, but still significant. Given that space constraints and the lack of a diesel standby generator make the costs for residential systems heavily dependent on battery prices, parity for most mainland residential systems will not occur before 2024 without technology or demand-side improvements. However, accelerated technology improvements coupled with demand-side improvements stand to make solar-plusbattery systems competitive with retail electricity in those regions of the U.S. with the highest retail prices. Combined improvements will put hybrid systems clearly in the black for residential customers with higher rates, and will also create competitive opportunities in locations with more moderate retail prices. In the Southwest, as many as 20 million residential customers could find economic advantage by 2024 with solar-plus-battery systems under our combined improvement scenario. In the Mid-Atlantic, roughly 8 million customers will find favorable economics for solar-plus-battery hybrid systems by 2024 given the same combined improvements. Between the two geographies this represents over \$34 billion in annual utility revenues. FIGURE 30: U.S. SOUTHWEST 2024 SOLAR-PLUS-BATTERY RESIDENTIAL SCENARIOS VS. ESTIMATED UTILITY DECILES [Y-AXIS - 2012\$/kWh] FIGURE 31: U.S. MID-ATLANTIC 2024 SOLAR-PLUS-BATTERY RESIDENTIAL SCENARIOS VS. ESTIMATED UTILITY DECILES [Y-AXIS - 2012\$/kWh] #### THE HONOLULU COMMERCIAL CASE The Honolulu commercial base case presents a startling result—it is already cost effective for a commercial customer to go off-grid with a solarplus-battery with a standby diesel generator system. Even more startling, it will be cost effective for commercial customers to go off-grid with a zeroemissions solar-plus-batteries-only system next year. So why haven't businesses done this? Well, some have, though not many. That's because multiple real challenges exist to scalable off-grid solutions. Most importantly, the standard business offering inclusive of installation and financing has not yet evolved to meet the opportunity. Further optimization of battery controls best suited to off-grid applications and communication systems signaling issues requiring O&M are all part of this need. For Hawaii, the economics have arrived faster than the required turnkey, scalable business models that can make it widespread. Our commercial analysis included low-level use of on-site diesel generators, which reduces the required size of the PV array and battery bank. In the 2013 simulation, the diesel generator runs about 1,000 hours (~11% of the year). As the cost of PV and batteries decreases over time, the optimal system reduces generator run time to about 250 hours (~3% of the year). While this run time is substantially lower, it still presents real issues related to environmental permitting and noise considerations.xxv In both instances (2013 and later years), fuel costs comprise 15–20% of total lifetime costs. Figure 32: Oahu circuits with installed PV up to and greater than 100% of peak load (from 9 a.m. to 5 p.m.). 43, xxiv Map courtesy of Hawaiian Electric. Used with permission. Removing the generator from the system does increase the cost for a commercial system that provides grid-equivalent reliability, but not as substantially as one might think, largely due to the solar resource in this particular location. Due to the high retail electricity prices in Hawaii, a solar-plusbattery-only system (i.e., without diesel generator) becomes competitive with retail electricity by 2015. Most Hawaii businesses are likely just beginning to become aware of the drop in technology costs and the financial vehicles that can be used to support their purchase of combined solar-plus-battery systems. xxx For a more detailed discussion of diesel standby generator permitting, emissions, and run time, see Appendix F. xxiv From RMI discussions with solar developers and the Hawaii PUC in Nov. 2013, interconnection evaluation wait times for proposed new systems on circuits at 100% or greater than minimum daytime load were extraordinary (a year or more). ## CONCLUSION Rising retail electricity prices (driven in part by rising utility costs), increasing energy efficiency, falling costs for distributed energy technologies such as solar-plus-battery systems, and increasing adoption of distributed energy options are fundamentally shifting the landscape of the electricity system. Our analysis shows that solar-plus-battery systems will reach grid parity—for growing numbers of customers in certain geographies, especially those with high retail electricity prices—well within the 30-year period by which utilities capitalize major power assets. Millions of customers, commercial earlier than residential, representing billions of dollars in utility revenues will find themselves in a position to cost effectively defect from the grid if they so choose. The so-called utility death spiral is proving not just a hypothetical threat, but a real, near, and present one. The coming grid parity of solar-plus-battery systems in the foreseeable future, among other factors, signals the eventual demise of traditional utility business models. Furthermore, early adopters and kWh sales decay will make utilities feel the pinch even before the rapidly approaching day of grid parity is here, while more aggressive technology improvements and investments in demand-side improvements beyond our base case would accelerate grid parity. Though utilities could and should see this as a threat, especially if they cling to increasingly challenged legacy business models, they can also see solar-plus-battery systems as an opportunity to add value to the grid and their business. When solar-plus-battery systems are integrated into a network, new opportunities open up that generate even greater value for customers and the network (e.g., potentially better customer-side economics, additional sizing options, ability of distributed systems to share excess generation or storage). The United States' electric grid is in the midst of transformation, but that shift need not be an either/or between central and distributed generation. Both forms of generation, connected by an evolving grid, have a role to play. Having conducted an analysis of when and where grid parity will happen in this report, the important next question is how utilities, regulators, technology providers, and customers might work together to reshape the market—either within existing regulatory frameworks or under an evolved regulatory landscape—to tap into and maximize new sources of value offered by these disruptive opportunities to build the best electricity system of the future that delivers value and affordability to customers and society. The implications of these disruptive opportunities on business model design are the subject of ongoing work by the authors and their institutions, covered in a forthcoming report to follow soon. ## APPENDIX A ## ADDITIONAL SOLAR-PLUS-BATTERY SYSTEM COST INFORMATION #### SOLAR PV All solar PV costs were normalized to 2012 U.S. dollars using the Bureau of Labor Statistics Consumer Price Index Inflation Calculator. Some data sources had merged PV cost curves, combining residential and commercial systems for average market costs. In these combined market data cases, we utilized market cost deltas from other references to create data resolution for residential and commercial costs. The PV costs use total installed costs, and therefore include a grid-tied inverter. To separate PV costs from the inverter, we used the BNEF PV Market Outlook report as a reference because it included disaggregated PV, including separate values for the PV module, inverter, and balance of systems. With this data, we calculated the proportion of total installed PV costs that came from the inverter alone. The average, 8%, was used to separate the installed curve into separate "PV without inverter" and
"inverter" values. The inverter included in grid-connected PV systems is a grid-tied inverter. A grid-tied inverter is not capable of islanding or providing other off-grid capabilities. In contrast, an off-grid inverter can operate without a grid connection and includes a battery charging system, additional control capabilities, and additional hardwire and wiring (but not batteries). An off-grid inverter is 25–30% more expensive than a grid-tied inverter.** Using this as our basis, we applied a 25% increase to the commercial inverter cost curve and a 30% increase to the residential inverter cost. #### **BATTERIES** BNEF's battery projections covered the period 2012–2030. In order to perform our modeling through 2050, we conservatively held the battery price reduction percentage constant year-over-year through 2050. Our final projection applied a 1.9% reduction to each year's price, resulting in \$99/kWh by 2050 (see Figure 19). To arrive at 1.9%, we considered multiple best-fit curves, and selected a power-fit trend line as the most conservative and realistic forward projection of battery costs. We chose to use only the 2021–2030 data for our 1.9% annual price reduction since this range presented a steady and much more conservative outlook, compared to 2012–2020, which varied by 4–15% each year. xxvi The 25–30% cost premium is based on confidential interviews with major inverter suppliers. ## APPENDIX B # MODELING DEMAND-SIDE IMPROVEMENTS: ENERGY EFFICIENCY AND LOAD FLEXIBILITY #### Energy efficiency Energy efficiency reduces overall energy consumption, such as through improved lighting (e.g., switching from incandescent bulbs to compact fluorescent bulbs or light emitting diodes), Energy-Star-rated appliances, and improved insulation to reduce heating and cooling demand for buildings. Our team based the set of efficiency interventions and the cost of efficiency on a study by Lawrence Berkeley National Laboratory. This study drew upon several prior efficiency-potential studies and compiled technical data to estimate savings percentages and costs of conserved energy. This report modeled that conserving energy costs \$0.027/kWhxxviii in 2007 U.S. dollars, with the total energy saved with energy efficiency measures 30% (residential scenarios) and 34% (commercial scenarios). These costs were converted to 2012 U.S. dollars and the energy reduction applied to the load profiles. #### Load flexibility In the residential systems, our demand-side improvement scenario allowed for about 170–200 hours of managed load flexibility during the year, representing a 2% capacity shortage from the full load. Our electrical demand profile was, otherwise, a rigid electrical load profile requiring electricity on demand. Allowing a capacity shortage means that the owners of the system reduce or shift their energy use, either manually or automatically, predominantly during winter months. Residential load management requires that residents either reduce or shift their loads in response to energy shortages. Much like an EV owner monitors the state of the battery charge on their vehicle and adapts their driving behavior accordingly, a homeowner with a solar-plus-battery system will have a similar ability to respond to the state of charge on their system. In winter months, when a period of cloudy weather is expected, homeowners will be able to respond by shifting when they use electricity or reducing their total consumption. This may mean waiting to wash clothes, washing dishes by hand, using lower settings on a dryer, programming appliances to run during the day, or foregoing certain energy-intensive activities like running a vacuum until the system can handle that demand. User-controlled load flexibility was not included in the commercial systems. xxviii \$0.027/kWh is a national average; some regions and programs will have lower or higher costs. | COMMERCIAL | WESTCHESTER | LOUISVILLE | SAN ANTONIO | LOS ANGELES | HONOLULU | |---|-------------|------------|-------------|-------------|----------| | Energy Saved (kWh) | 196,292 | 205,683 | 228,024 | 199,378 | 245,744 | | Yearly Cost of Conserved
Energy (2012\$) | \$5,717 | \$5,991 | \$6,642 | \$5,807 | \$7,158 | Table A1 – Commercial demand-side improvement inputs | RESIDENTIAL | WESTCHESTER | LOUISVILLE | SAN ANTONIO | LOS ANGELES | HONOLULU | |---|-------------|------------|-------------|-------------|----------| | Energy Saved (kWh) | 3,584 | 3,854 | 4,576 | 2,379 | 4,342 | | Yearly Cost of Conserved
Energy (2012\$) | \$104 | \$112 | \$133 | \$69 | \$126 | ${\sf Table}\ {\sf A2-Residential}\ demand\text{-side improvement inputs}$ # APPENDIX C ## ADDITIONAL TECHNICAL PERFORMANCE ASSUMPTIONS This appendix includes a description of a number of the detailed technical performance assumptions used in the modeling. | PARAMETER | VALUE | DESCRIPTION | SOURCE | |--|---------------------|---|---| | Solar panel lifetime | 25 years | The expected lifetime of the solar PV modules. | This is typical of the lifetime warranty that solar panel manufacturers offer | | Performance de-rate | 78% | Actual installed performance as compared to laboratory performance. 100% would match laboratory performance. | Professional experience | | Net installed capacity limit (residential) | 20 kWp | Represents a rough limit due to available PV array installation area. Actual limit will vary based on roof orientation/tilt, area, and PV array efficiency. | Assumed based on an available roof area of a typical home. | | Net installed capacity
limit (commercial) | None | Commercial space limits will vary substantially by business type and location, so were not included. | Assumed | | Installed cost | Varies by year | See Appendix E: Financial Assumptions | | | PV slope | Matched to latitude | The angle at which the PV panels are mounted relative to horizontal | Standard industry practice is to set the slope equal to latitude. | Table A3 – PV array technical assumptions #### Battery technical assumptions A battery enables an off-grid system to store energy and moderate power flows to maximize the operational efficiency of the system. A battery is a critical component of most hybrid power systems. The battery used in the model is intended to represent a generic battery with 1 kWh of capacity. However, due to its current promise as an efficient, durable, shelf-stable battery with excellent power characteristics, lithium-ion (in particular LiFePO₄) was used as a basis for specification development. There are many promising technologies that may exceed both the technical and economic performance of these batteries, including advanced lead acid, other novel chemistries, or flow batteries. The authors do not take a position on which chemistry is superior, but have consolidated professional experience with subject matter expert (SME) interviews and a literature review to develop the battery model used in the analysis. It is clear that the storage technology of the future will be low(er) cost, have high roundtrip storage efficiency, and have strong power performance relative to energy storage capabilities. | PARAMETER | VALUE | DESCRIPTION | SOURCE | |----------------------------|--|---|---| | Capacity | 1 kWh | The nominal storage capacity of the battery | Author-imposed selection to make analysis generic and transferable | | Calendar life (float life) | 15 years | The maximum lifetime of the battery, regardless of use | Professional experience validated with anecdotal review of LiFePO ₄ specification sheets | | Lifetime throughput | 3,750 cycles
at 80% depth
of discharge | The total amount of energy that can be cycled through the battery before it needs replacement | Professional experience validated with anecdotal review of LiFePO ₄ specification sheets | | Roundtrip efficiency | 90% | The round trip DC-to-storage-to-DC efficiency of the battery bank | Professional experience | | Minimum state of charge | 20% | The relative state of charge below which the battery bank is never drawn | Professional experience | | Maximum charge power | 1 kW | The maximum power that can be used to charge each battery | Professional experience validated with anecdotal review of LiFePO ₄ specification sheets | | Maximum discharge power | 3 kW | The maximum power that each battery can discharge | Professional experience validated with anecdotal review of LiFePO ₄ specification sheets | | Installed cost | Varies by year | See Appendix E: Financial Assumptions | Review of literature validated with SME interviews (see main report for full source list) | Table A4 – Battery technical assumptions #### Genset technical assumptions Standby diesel gensets were included in commercial scenarios in recognition of the premium placed on reliable electricity for business and that many businesses already use a diesel genset for backup power.xxviii | PARAMETER | VALUE | DESCRIPTION | SOURCE | |-------------------------------|-------------------------------------|---|---| | Fuel | Diesel | The fuel is combusted to make electricity; diesel was chosen for its wide availability | | | Applicable scenarios
 Commercial only | The genset was only allowed to operate in commercial scenarios | | | Operational limit | 25% of total
energy | The generator was allowed to contribute only 25% of the total energy | Author-imposed constraint | | Sizing basis | 110% of
annual peak
load | Gensets are typically sized slightly higher than the peak load to improve reliability for meeting high loads while keeping the generator operating as close to peak efficiency as possible. | Professional experience | | Permitting compliance | Tier IV
compliant | Tier IV emissions standards are mandated
by the U.S. Environmental Protection Agency
to reduce harmful exhaust gases from diesel
powered equipment. Tier IV compliance
reduces particulate matter (PM) and nitrogen | Professional experience | | Installed cost | \$500/kW | The installed cost per unit of capacity | Professional experience validated with SME interviews | | Operation & maintenance cost | \$0.025/kW/
hour of
operation | The cost of operating and maintaining the generator per hour of operation | Professional experience validated with SME interviews | | Peak fuel efficiency | ~31% | The amount of input fuel energy converted into electricity at full genset output | Professional experience validated with SME interviews | | Fuel efficiency @ 50%
load | ~25% | The amount of input fuel energy converted into electricity at 50% genset output | Professional experience validated with SME interviews | Table A5 — Genset technical assumptions $^{^{\}mbox{\tiny xxyiii}}$ For more information on diesel generator permitting, emissions, and run time, also see Appendix F. #### Inverter technical assumptions An inverter converts electricity from alternating current (AC) to direct current (DC) and vice versa. Grid-tied inverter costs were derived from the PV costs listed in Appendix A. We calculated the cost breakdown based on the BNEF PV Market Outlook report. 46 It included disaggregated PV including separate values for the PV module, inverter, and balance of systems. The on-grid inverter costs represented from 7.8% to 9.5%, depending on the year. The average percentage, 8%, was used to derive the inverter costs from the installed PV cost curves. The inverter installed in typical grid-connected PV systems is a grid-tie (aka grid-following) inverter. A grid-tied inverter is not capable of islanding or providing other off-grid capabilities. In contrast, an off-grid inverter can operate without a grid connection and includes a battery charging system, grid controls, and additional hardwire and wiring (but not batteries). An off-grid inverter is 25–30% more expensive than a grid-tied inverter.xxix Using this as our basis, we applied a 25% increase to the commercial inverter cost curve and a 30% increase to the residential inverter cost. xxix The 25–30% cost premium is based on interviews with a major inverter supplier that asked not to be identified. | PARAMETER | VALUE | DESCRIPTION | SOURCE | |--|----------------|--|---| | Inverter type | Grid forming | An off-grid inverter can operate without a grid connection and includes a battery charging system, grid controls, and additional hardwire and wiring (but not batteries) | | | Rectifier/charger
efficiency (AC to DC) | 90% | The efficiency of converting electricity from AC to DC | Professional experience validated with SME interviews | | Inverter efficiency
(DC to AC) | 95% | The efficiency of converting electricity from DC to AC | Professional experience validated with SME interviews | | Off-grid inverter cost
premium (residential/
commercial) | 30% / 25% | An off-grid inverter is more expensive than a grid-tie inverter | Major inverter supplier that asked not to be identified | | Installed cost | Varies by year | See Appendix E: Financial Assumptions | Review of literature validated with SME interviews (see main report for full source list) | Table A6 – Inverter technical assumptions ## APPENDIX D #### **HOMER MODELING** The HOMER® software model uses a chronological annual simulation to determine how systems with different sets of equipment can be used meet an electrical load. The annual simulation includes an hourby-hour energy balance that determines how energy generators and storage are dispatched. This simulation underpins all analyses in HOMER. The input data for the simulation includes equipment costs, performance data, solar and fuel resource data, efficiency, and equipment sizes. Based on these inputs, HOMER simulates how these different systems will perform. By varying the HOMER capacity of installed equipment within a user-defined search space determines the optimal set of equipment in a location. HOMER's optimization ranks the simulated systems by net present cost (NPC), which accounts for all of the discounted operating costs over the system's lifetime. In addition to varying the capacity of the installed equipment, the user may also use HOMER's automated sensitivity analyses by varying the underlying assumptions for a location—for example, the cost of diesel fuel or the installed cost of equipment. Sensitivity analysis is different from optimization because it varies things that a system designer cannot control. This enables the model to make a distinction between things the user can control in the design (e.g., the size of a diesel generator) from those the user can't control (e.g., diesel fuel price). Together, simulation, optimization, and sensitivity analysis form the foundation for HOMER analysis: An hourly simulation includes 8,760 annual energy balances in a simulation (one for each hour of the year). Optimizations encompass a number of chronological annual simulations, and a sensitivity analysis encompasses a number of optimizations. Together, these can be used to determine what system is optimally suited for a particular location, and how that optimal system might change in the face of data uncertainty or future variation. ## Applying the HOMER model to the market Using the HOMER software, we developed energy models for representative residential and commercial off-grid markets in each geographic region. Model inputs including component costs, electrical load profiles, fuel prices, and geographical location were based on the base case data. All residential sites were powered exclusively by PV and battery storage. Commercial sites were modeled both with and without a standby generator sized to 110% of the system peak load. In all systems, the PV array was modeled to include a dedicated inverter to allow it to connect directly to the AC bus. The battery bank was connected to the system on the DC bus. The converter to transfer electricity from the AC to DC bus was modeled to be a grid-forming inverter with battery charger. Each location had a different load profile, based on NREL OpenEl data.⁴⁷ The HOMER model schematic for the Louisville residential and commercial models can be seen below. # APPENDIX E ## FINANCIAL ASSUMPTIONS For the purposes of this report, the researchers made several key financial assumptions: - 1. First-Party (Host-Owned) Ownership of Residential and Commercial Systems—Many solar PV systems in the U.S. are built using a third-party financing model where the system host pays a per kWh rate to a third-party financier, allowing for system cost recovery over the life of the power purchase agreement. The third-party finance model is largely based upon the fact that third-party finance entities can utilize more tax credits than most property owners. However, since not all of the current tax credits are scheduled to extend far into the future, the researchers chose to model first-party system ownership. - 2. The Models Only Consider Federal Tax Credits— To control for potential incentives, only federal tax credits were considered for the models; no local or state tax treatments were applied. No assumptions were made about the renewal of key federal tax credits. - 3. Assumed Discount Rates—These rates were used to discount system operation and maintenance costs and forecast soft costs to the projected construction date. This allowed the researchers to determine the net present value of systems built in the future. | . | | , | |--------------|--------------|------------| | | Interest Rat | | | (Weighte | d Average Co | | | 2012 | Residential | Commercial | | 2012 | 9.5% | 9.7% | | 2013 | 9.4% | 9.6% | | 2014 | 8.8% | 9.5% | | 2015 | 8.2% | 8.7% | | 2016 | 7.8% | 8.7% | | 2017 | 5.1% | 5.4% | | 2018 | 4.9% | 4.9% | | 2019 | | 4.5% | | 2020 | | | | 2021 | | | | 2022 | | | | 2023 | | | | 2024 | | | | 2025 | | | | 2026 | | | | 2027 | | | | 2028 | | | | 2029 | | | | 2030 | | | | 2031 | | | | 2032 | | | | 2033
2034 | | | | | 4.60/ | | | 2035 | 4.6% | 4.4% | | 2036
2037 | | | | 2037 | | | | 2038 | | | | 2039 | | | | 2040 | | | | 2041 | | | | 2042 | | | | 2043 | | | | 2044 | | | | 2045 | | | | 2040 | | | | 2047 | | | | 2048 | | | | 2049 | | | | SunShot | | | | JUNISHIOT | | | ## APPENDIX F ## DIESEL STANDBY GENERATOR PERMITTING, EMISSIONS, AND RUN TIME #### **Permitting** In 2006, the EPA began regulating stationary non-road diesel engines (i.e., off-highway) to the same emissions standards as highway diesel engines (those used in trucks and other motor vehicles) and mobile non-road engines (those used in farm and construction equipment). The EPA had previously exempted all stationary diesel engines from emissions regulations, leaving the permitting of these engines largely to the discretion of local authorities having jurisdiction (AHJs). The new EPA regulations require that stationary generators used for non-emergency applications (those operating
>100 hours/year) meet Tier 4 or interim Tier 4 New Source Performance Standards (NSPS) by 2014. All non-emergency generators must be fully Tier 4 compliant by 2015. Tier 4 standards bring stationary generator emissions of NOx on par with those of natural-gas-powered equipment with the Best Available Control Technology (BACT). While the new NSPS established the first uniform federal regulation for stationary diesel generators, local AHJs may still establish more restrictive standards based on local air quality conditions. Supplemental regulations generally require that BACT is employed to bring NO_{x} and particulate emissions below certain thresholds, and do not necessarily restrict the hours of runtime permitted for a generator unit. Given the shift in permitting from a run-time restriction largely driven by local regulation to one in which run time is unrestricted but emissions are controlled, we chose to allow diesel generators to provide up to 25% of total load in commercial simulations. This upper limit was selected based on the guidance of IRS PLR 201308005, which requires that 75% of the energy stored by a battery in a hybrid system come from the solar PV for full eligibility of the ITC. A system that requires the generator to run 250–1,000 hours would likely require an investment in a modern, non-emergency generator by companies wishing to pursue solar-plus-battery solutions in the early years of grid parity. #### **Emissions** While our commercial scenarios do rely on a diesel generator, it never supplies more than 25% of the electric demand, and in most cases far less than that. Despite the fact that diesel generators in our commercial scenarios are run more often than a typical backup generator, emissions are much lower than electricity purchased from the grid today. In Westchester in 2014, for example, CO_2 emissions are 20% lower than the grid, in Los Angeles emissions are 43% lower, and remaining locations are all 73% lower. Since diesel generator use drops nearly in half (or more) by 2050, emissions experience similarly precipitous declines throughout the years. # APPENDIX G ## **ANALYTICAL RESULTS BY GEOGRAPHY** ## COMMERCIAL TABLES - WESTCHESTER, NY | | | | | | | | | | | Ba | se Case | - Westche: | ster Comme | ercial (with Ge | enset) | | | | | | | | | | | | | | | |-----------|--------------|----------|-----|--------------------|-----------|------------------|-----------|------------|--------------|-----------|---------|------------|------------|------------------|-------------|-----------|----------|--------|---------|---------|---------|---------|---------|----------|--------|--------|------------|----------|------------| Emissio | ns | | 7 | | | | | | | | | | | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | | | Genset | Genset | Genset B | attery E | Battery | | Year PV | Diesel Gense | | | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | | | | | Production | Load Served | Fraction | Shortage | Load | | | | JHC PI | | NOx | Fuel | | | | Throughput | | kW | kW | Quantity | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | | | kWh/yr | | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr k | g/yr kg | /yr kg/ | yr kg/yr | L/yr | hr/yr | starts/yrh | | kWh/yr | | 2014 5 | | | 200 | | 2,144,040 | | 7,130 | | 227,181 | | 0.393 | | | 857,536 | | | | 0 (| 194,553 | | 313 | 35 | | 55 2,79 | | 1,064 | | 20.03 | 322,170 | | 2016 5 | | | | | 1,889,235 | 23,811 | 7,130 | 36,302 | 187,681 | | 0.325 | | 143,557 | 857,435 | | | | 0 (| 194,417 | 126,784 | 313 | 35 | | 55 2,79 | | | 101 | 20.03 | 322,299 | | 2018 5 | | | | | 2,377,849 | | 6,976 | 35,844 | 167,027 | | | 713,878 | 142,105 | 855,984 | | | | 0 (| | 124,525 | 307 | 34 | | 50 2,74 | | | | 20.03 | 322,139 | | 2020 5 | | | | | 2,283,343 | 21,627 | 7,051 | 37,702 | 152,405 | | 0.264 | | | 856,041 | | | | 0 (| | 125,199 | 309 | 34 | | 51 2,75 | | | | 20.03 | 321,906 | | 2022 6 | | | | | 2,175,473 | 18,763 | 6,897 | 37,538 | | | | | 133,583 | 912,360 | | | | 0 (| 249,542 | | 294 | 33 | | 39 2,62 | | | | 19.42 | 320,944 | | 2024 6 | | | | | 2,071,831 | 17,615 | 6,788 | 36,451 | 138,288 | | 0.239 | 778,777 | 126,378 | 905,155 | | | | 0 (| 241,729 | | 276 | 31 | 21 2 | 24 2,46 | | | | 20.64 | 322,629 | | 2026 6 | | | | | 2,000,201 | 16,369 | 6,934 | 36,418 | 133,507 | | 0.231 | | 121,746 | 900,524 | 577,43 | | | 0 (| 236,960 | | 267 | 30 | 20 2 | 17 2,38 | | | | 21.85 | 323,257 | | 2028 6 | | | | | 1,953,823 | 14,432 | 6,632 | 34,963 | 130,411 | | 0.226 | | 113,425 | 957,100 | | | | 0 (| 293,714 | | 249 | 28 | | 03 2,22 | | 870 | | 21.24 | 322,719 | | 2030 6 | | | | | 1,909,217 | 13,403 | 6,632 | 35,884 | 127,434 | | 0.221 | | 113,425 | 957,100 | | | | 0 1 | 293,714 | | 249 | 28 | | 03 2,22 | | | 73 | 21.24 | 322,719 | | 2032 6 | | | | | 1,911,742 | 13,068 | 6,632 | 36,882 | 127,602 | | 0.221 | | 113,425 | 957,100 | | | | 0 1 | 293,714 | | 249 | 28 | | 03 2,22 | | | 73 | 21.24 | 322,719 | | 2034 6 | | | | | 1,917,526 | 12,825 | 6,632 | 38,302 | 127,988 | | | | 113,425 | 957,100 | | | | 0 (| 293,714 | | 249 | 28 | | 03 2,22 | | | | 21.24 | 322,719 | | 2036 6 | | | | | 1,917,028 | 12,630 | 6,632 | 39,184 | 127,955 | | 0.222 | | 113,425 | 957,100 | | | | 0 (| 293,714 | | 249 | 28 | 19 2 | 03 2,22 | | 870 | 73 | 21.24 | 322,719 | | 2038 6 | | | | | 1,922,133 | 13,905 | 6,832 | 35,382 | 128,296 | | 0.222 | | 100,589 | 944,264 | | | | 0 1 | 279,391 | 89,246 | 220 | 24 | 17 1 | 79 1,96 | | 759 | 57 | 24.88 | 328,553 | | 2040 6 | | | | | 1,927,984 | 13,718 | 6,832 | 36,670 | 128,686 | | 0.223 | | 100,589 | 944,264 | | | | 0 1 | 279,391 | 89,246 | 220 | 24 | 17 1 | 79 1,96 | | 759 | 57 | 24.88 | 328,553 | | 2042 6 | | | | | 1,904,802 | 13,517 | 6,832 | 35,619 | 127,139 | | 0.22 | | 100,589 | 944,264 | | | | 0 1 | 279,391 | 89,246 | 220 | 24 | | 79 1,96 | | 759 | 57 | 24.88 | 328,553 | | 2044 6 | | | | | 1,899,404 | 16,054 | 7,572 | 31,553 | 126,779 | | 0.22 | | 87,811 | 866,588 | | | | 0 (| 198,265 | 77,800 | 192 | 21 | | 56 1,71 | | | | 31.56 | 339,766 | | 2046 6 | | | | | 1,898,532 | 15,815 | 7,572 | 32,085 | 126,721 | | 0.219 | | 87,811 | 866,588 | | | | 0 (| 198,265 | 77,800 | 192 | 21 | | 56 1,71 | | | | 31.56 | 339,766 | | 2048 6 | | | | | 1,890,687 | 15,502 | 7,572 | 32,617 | 126,197 | | 0.219 | | 87,811 | 866,588 | | | | 0 1 | 198,265 | 77,800 | 192 | 21 | | 56 1,71 | 29,544 | | 43 | 31.56 | 339,766 | | 2050 6 | 00 1 | | | | 1,889,909 | 15,277 | 7,572 | 33,119 | 126,145 | | 0.218 | | 87,811 | 866,588 | 577,43 | | | 0 (| 198,265 | 77,800 | 192 | 21 | | 56 1,71 | | | 43 | 31.56 | 339,766 | | Sunshot 6 | 00 1 | 14 2,600 | 300 | 748,508 | 1,367,318 | 10,303 | 7,572 | 23,429 | 91,264 | 41,303 | 0.158 | 778,777 | 87,811 | 866,588 | 577,43 | 1 85% | | 0 1 | 198,265 | 77,800 | 192 | 21 | 14 1 | 56 1,71 | 29,544 | 659 | 43 | 31.56 | 339,766 | | | | | | | | | | | Base Case - | Westches | er Con | nmercial (w | ithout Gen | set) | | | | | | | | | | | | | |---------|-------|-------------|-----------|--------------------|-----------|------------------|-----------|------------|--------------|-----------|--------|-------------|------------|-------------|-----------|----------|--------|-------------|-------|-------|-------|--------|-------|------|----------|------------| | | | | | | | | | | | | | | | , | | | | | | | Emis | ssions | | | 7 | | | | | | | | | | | | | | | | Total | | | | | | | | | | | | | T | | | | | | | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | | | | Battery | Battery | | Year | PV | 1kWh Li-ion | Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | | Cost | | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | CO2 | CO | UHC | PM | SO2 | NOx | Autonomy | Throughput | | | kW | Quantity | kW | \$ | \$ | | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/y | r hr | kWh/yr | | 2014 | | | 500 | | | | 10,400 | | 463,577 | | 0.803 | 1,687,349 | | | | 526 | 414 | 1,023,183 | | 0 | 0 |) (| (| 0 0 | 0 63.1 | | | 2016 | | | 500 | 3,003,580 | 3,790,150 | 67,740 | | 0 | 376,522 | | 0.653 | 1,687,349 | 1,687,349 | | | 526 | 414 | | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | 2 331,714 | | 2018 | | | 500 | 3,542,116 | | | | 0 | 325,725 | | 0.564 | | | | | 526 | 414 | | | 0 | 0 |) (| (| 0 0 | 0 63.1 | | | 2020 | 1,300 | 5,200 | 500 | 3,169,112 | | | 10,400 | | 281,245 | | 0.487 | 1,687,349 | | | | 526 | 414 | | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2022 | | | 500 | 2,880,080 | | | 10,400 | | 255,513 | | 0.443 | | | | | 526 | 414 | | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2024 | | 5,200 | 500 | 2,635,516 | | | | | 233,361 | 57,449 | 0.404 | 1,687,349 | | | | 526 | 414 | | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2026 | | 5,200 | 500 | 2,464,124 | | | | 0 | 216,962 | | 0.376 | 1,687,349 | | | | 526 | 414 | | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2028 | | 5,200 | 500 | 2,352,792 | | | 10,400 | 0 | 205,661 | 48,620 | 0.356 | 1,687,349 | | 577,017 | 100% | 526 | 414 | | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2030 | | | 500 | 2,244,936 | | | | 0 | 195,431 | 45,589 | 0.339 | 1,687,349 | 1,687,349 | | | 526 | 414 | | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2032 | | | 500 | 2,222,940 | | | 10,400 | 0 | 192,967 | 44,593 | 0.334 | 1,687,349 | | | | 526 | 414 | 1,023,183 | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2034 | | 5,200 | 500 | 2,194,028 | | 33,472 | | | 190,316 | | 0.33 | | | | | 526 | 414 | | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2036 | | 5,200 | 500 | 2,168,236 | | | 10,400 | | 188,016 | | 0.326 | | | | | 526 | 414 | 1,023,183 | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2038 | | 5,200 | 500 | 2,157,056 | | |
10,400 | | 186,761 | | 0.324 | 1,687,349 | | | | 526 | 414 | -,, | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2040 | | | 500 | 2,133,552 | | 31,910 | 10,400 | | 184,717 | 42,310 | 0.32 | | | | | 526 | 414 | | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2042 | | 5,200 | 500 | 2,122,320 | | | 10,400 | 0 | 183,457 | 41,800 | 0.318 | 1,687,349 | | | | 526 | 414 | | | 0 | 0 |) 0 | (| 0 0 | 0 63.1 | | | 2044 | | 5,200 | 500 | 2,098,400 | | | 10,400 | 0 | 181,368 | | 0.314 | 1,687,349 | | | | 526 | 414 | | | 0 | 0 | 1 0 | 0 | 0 0 | 0 63.1 | | | 2046 | | | 600 | 2,063,018 | | | 10,700 | | 180,174 | 42,474 | 0.312 | | | 577,022 | | 518 | | | | 0 | 0 | 1 0 | (| 0 0 | 0 64.9 | | | 2048 | | 5,350 | 600 | 2,039,979 | | | | | 177,997 | 41,835 | 0.308 | | | 577,022 | | 518 | 410 | | | 0 | 0 |) 0 | (| 0 0 | 0 64.9 | | | 2050 | 1,250 | 5,350 | 600 | 2,029,814 | | | | 0 | 176,856 | | 0.306 | 1,622,451 | | 577,022 | | 518 | | | | 0 | 0 |) 0 | (| 0 (| 0 64.9 | | | Sunshot | 1,250 | 5,350 | 600 | 1,402,353 | 1,869,275 | 20,465 | 10,700 | 0 | 124,768 | 31,165 | 0.216 | 1,622,451 | 1,622,451 | 577,022 | 100% | 518 | 410 | 958,021 | . 0 | 0 | 0 |) (| (C | 0 0 | 64.9 | 4 332,975 | | | | | | | | | | | | | Base Cas | e - Westch | ester Fixed | Cost of Capi | tal (9.5%) wit | th Genset | | | | | | | | | | , | | | | I | |---------|-----|-----|----------|-----|--------------------|-----------|------------------|-------|--------|--------------|----------|------------|-------------|--------------|------------------|-------------|----------|----------|--------|---------|---------|------|-----------|---------|-------|--------|--------|-----------|-------|------------| | - | Emissions | _ | _ | | | | | | | | | | | | | | L | | | L | | | | | | | l | | | l. | | | | | | l | | | | 1 | | | L | | | | | | Total Annual | | | Total Annual | | | PV | | Total Electrical | | | | Unmet | | l l. | | | | | | Genset | | | Battery | | Yea | | | | | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | COE | Production | | | Load Served | Fraction | Shortage | Load | | | | UHC PM | SO2 | NOx | | | | | Throughput | | | kW | | Quantity | kW | \$ | Ş | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | | | kWh/yr | | | kWh/yr | | | в/ут | | r kg/yr | | | | starts/yr | | kWh/yr | | 201 | | | 1,650 | | | 2,144,040 | 27,632 | | | 227,181 | | | | 143,657 | 857,536 | | | | | | | 313 | | | | 48,171 | | 102 | 20.03 | | | 201 | | | 1,650 | | | 1,839,580 | | | | 194,921 | | 0.331 | | 143,557 | | | | | | | | 313 | | | | 48,146 | | 101 | | | | 201 | | | 1,650 | | | 2,025,03 | | | | 214,571 | | 0.37 | | 143,557 | 857,435 | | | | | | | | | | | 48,146 | | 101 | | | | 2021 | | | 1,650 | | | 1,884,528 | | | | 199,683 | | 0.34 | | 143,236 | 857,114 | | | | | | 127,271 | | | | 2,803 | | | 100 | 20.03 | | | 202 | | | 1,850 | | | 1,777,90 | | | | 188,385 | | 0.32 | | 143,289 | 792,269 | | | | | 127,871 | | 312 | | | 2,787 | | | 85 | 22.46 | | | 202 | | | 1,850 | | | 1,680,882 | | | | 178,105 | | | | 142,241 | 791,220 | | | | 1 0 | 126,742 | | 311 | | | | 47,794 | | 85 | 22.46 | | | 202 | | | 1,850 | | | 1,616,820 | | | | 171,317 | | 0.29 | | 142,346 | | | | | 1 0 | | | 311 | | | | 47,878 | | 85 | 22.46 | | | 202 | | | 1,850 | | | 1,576,615 | | | | 167,057 | 65,132 | 0.28 | | 142,346 | | | | | | 126,857 | | 311 | | | 2,777 | | | 85 | 22.46 | | | 203 | | | 1,850 | | | 1,538,35 | | | | 163,003 | | 0.28 | | 142,346 | | | | | | | | 311 | | | 2,777 | | | 85 | 22.46 | | | | 500 | | 1,850 | | | 1,539,405 | | | | 163,114 | | 0.28 | | 142,346 | | | | | | 126,857 | | 311 | | 23 25 | | | | 85 | 22.46 | | | 2034 | | | 1,850 | | | 1,543,380 | | | | 163,536 | | 0.28 | | 142,346 | | | | | | 126,857 | | 311 | | 23 25 | | | | 85 | 22.46 | | | 203 | | | 1,850 | | | 1,542,56 | | | | 163,449 | | 0.28 | | 142,346 | | | | | | | | 311 | | | 2,777 | | | 85 | 22.46 | | | 203 | | | 1,850 | | | 1,547,51 | | 7,541 | | 163,973 | | | | 142,346 | | | | | | 126,857 | | 311 | | 23 25 | | | | 85 | 22.46 | | | 204 | | | 1,850 | | | 1,554,618 | | | | 164,726 | | 0.28 | | 142,288 | | | | | | 126,799 | | 311 | | 23 25 | | | | 85 | 22.46 | | | 204 | | | 1,850 | | | 1,535,147 | | | | 162,663 | | | | 142,288 | | | | | 0 | | | 311 | | | | 47,875 | | 85 | 22.46 | | | 204 | | | 1,850 | | | 1,532,523 | | | | 162,385 | | | | 142,288 | 791,268 | | | | 1 0 | 126,799 | | 311 | | 23 25 | | | | 85 | 22.46 | | | 204 | | | 1,850 | | | 1,535,539 | | | | 162,705 | | 0.28 | | 142,288 | | | 75 | 6 (| 0 | | | 311 | | | 2,777 | | | 85 | 22.46 | | | 204 | | | 1,850 | | | 1,533,143 | | | | 162,451 | | 0.28 | | 142,288 | | | | | 1 0 | | 126,071 | | | | | 47,875 | | 85 | 22.46 | | | 205 | | | 1,850 | | | 1,536,017 | | | | 162,755 | | 0.28 | | 142,288 | | | | | 1 0 | | | 311 | | | | 47,875 | | 85 | 22.46 | | | Sunshot | 500 | 144 | 1,900 | 250 | 615,602 | 1,118,317 | 8,240 | 7,584 | 37,444 | 118,496 | 53,267 | 0.20 | 648,980 | 140,443 | 789,423 | 577,43 | 1 769 | 6 (|) (| 124,467 | 124,340 | 307 | 34 | 23 25 | 2,739 | 47,218 | 1,051 | 84 | 23.06 | 329,111 | | Accelerated Technology Improvement - Westchester Commercial (with Genset) | | | | | | | | | | | | | | | Genset) | | | | | | | | | | | | | | | |--|--------------|-----------------------------------|---|--|---|--|--|--|---------|--------------
--|--|--|--
--|---|---|---
--|--|--|--
---|--|---|--
---|--|---| Emissi | ons | | | | | | | | ction Study PV Diesel Genset 13Wh 1-ion Converter Cost Total No. Total No. Total No. Total Cost Cost Cost Cost Cost Cost Cost Cost | Ge | set Ger | iset Genset | Battery | Battery | | | | | | | Di | iesel Genset | LkWh Li-ion | Converter | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | COE | Production | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | CO2 | co t | JHC | PM | SO2 | NOx Fu | Ho: | urs Starts | Autonom | Throughput | | kV | w c | Quantity | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | | kWh/yr | kWh/yr | | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr k | g/yr | kg/yr | kg/yr | kg/yr L/y | hr/ | yr starts/ | r hr | kWh/yr | | 50 | 144 | 1,600 | 250 | 1,040,432 | 1,832,774 | 19,014 | 6,019 | 27,853 | 122,331 | 52,886 | 0.212 | 973,471 | 104,416 | 1,077,887 | 577,431 | 0.82 | 0 | 0 | 415,591 | 92,493 | 228 | 25 | 17 | 186 | 2,037 35 | 124 | 783 | 75 19.4 | 2 318,66 | | 50 | 144 | 1,600 | 250 | 903,824 | 1,606,376 | 12,885 | 6,066 | 27,942 | 107,220 | 46,893 | 0.186 | 973,471 | 104,265 | | | 0.82 | 0 | 0 | 415,423 | 92,788 | 229 | 25 | 17 | 186 | 2,044 35 | .236 | 796 | 75 19.4 | 2 318,72 | | 50 | 144 | 1,750 | 200 | 793,593 | 1,524,077 | 11,691 | 6,632 | 30,434 | 101,727 | 48,757 | 0.176 | 843,675 | 113,425 | 957,100 | 577,431 | 0.8 | 0 | 0 | 293,714 | 101,063 | 249 | 28 | 19 | 203 | 2,226 38 | 378 | 870 | 73 21.2 | 4 322,71 | | 00 | 144 | 2,600 | 300 | 748,482 | 1,367,292 | 10,303 | 7,572 | 23,429 | 91,262 | 41,304 | 0.158 | 778,777 | | | | | 0 | 0 | 198,265 | 77,800 | 192 | 21 | 14 | 156 | 1,714 29 | 544 | 659 | 43 31.5 | 6 339,76 | | 00 | 144 | 2,600 | 300 | 709,222 | 1,301,344 | 8,521 | 7,572 | 23,429 | 86,860 | 39,522 | 0.15 | 778,777 | 87,811 | 866,588 | 577,431 | 0.85 | 0 | 0 | 198,265 | 77,800 | 192 | 21 | 14 | 156 | 1,714 29 | 544 | 659 | 43 31.5 | 6 339,76 | | 51
51
01 | k | kW 144
0 144
0 144
0 144 | kW Quantity 144 1,600 144 1,600 144 1,750 144 2,600 | kW Quantity kW
144 1,600 250
144 1,600 250
1 144 1,750 200
1 144 2,600 300 | Diezel Genset 1kWh Li-ion Converter Cost kW Quantity kW \$) 144 1,600 250 1,040,432) 144 1,600 250 93,324) 144 1,750 200 793,593) 144 2,600 300 748,482 | Diesel Genset 1kWh Li-ion Converter Cost Total NPC | Diesel Gennet 1 HWh Li-in Converter Cost Total NPC Replacement Cost V Total NPC Replacement Cost V S S S/F | Diest Greek LWN Li-on Converter Cost Total NPC Replacement Cost Cost W | | Deside Genet | Deside Semet Marki Li-lon Converter Cost Total Cost Co | Deside Genet 14Wh 1-1-in Converter Cost Total Annual Total Annual Cost | Deside Genet 14Wh 1-100 Convert Total Annual A | Desired Genet 14Wh 1-1-to Converter Cost Total New Replacement of Cost Co | Desired Genetal EMPh I Li-lino Converter Cost Total A New Registerment of Cost | Desired Genet LiWh Li-lor Converter Cost Total Normal Total Annual Desired Cost | Deed Germet 150/h 1-100 Converter Cost Total Cost Total Cost | Desired General 110Mh 11-in Converter Cost Total Normal Total Annual Desirating Cost | Deed Genet 11Wh 1-ion Converter Cost Total NPC Replacement of Cost | Deed Gernet 14Wh U-ion Converter Cost Total ORM Total First Total Annual Operating Ope | Deed Gernet 11Wh 1-ion Converter Cost Total Cognital Total Annual Total Annual Operating Found Operati | Deed Gernet 11Wh 1-ion Converter Cost Total Operating Total Annual Cost C | Deed Genet 18/Mh U-ion Converter Cost | Deed Germet 11/Wh 1-100 Converter Cost Total Capital Total Acmial Total Odd Total Acmial Total Acmial Deerst Cost | Deed Geneel 11/04 11/10 Converter Cotal Total Cotal | Deed Germet 12Wh 1-100 Converter Cost Cos | Deed Geneet 11Wh 1-10 Converter Cost | Deed General 12Wh 1-100 Converter Cost Total Captural
Total OBM Total Fall Total Annual Operating Oper | Deed Geneel 10Wh U-ion Converter Cost Total No. Registerment cost | | _ |---------|-----|---------------|-------------|------------|------------|--------------------|-----------|------------------|----------------|---------------|----------------------|-------------|-----------|-------------|-----------|------------------|-------------|-----------------------|----------------------|----------|--------|----------|--------|--------|------|-------|-------------------|-------|------------------|----------|------------| | | | | | | | | | | | | Dem | and-side In | nprovemen | t - Westche | ster Comm | ercial (with Ge | enset) | | | | | _ | | | | | _ | | | | | | | _ | | | | | | | | _ | | | | | | | | | | | | | - | | Emissi | ons | | | | | | | | | | | | | Efficiency | | | Total Annual | Total O&M | | | | | L | Genset | Total Flectrical | AC Primary | | | l | _ | | | | | | | | | | Rattery | | Yea | -m | Diesel Genset | 1kWh Li-ion | | | Total Capital Cost | T-A-LAIDC | Replacement Cost | Cost | | Total
Annual Cost | Operating | COF | Production | | | Load Served | Renewable
Fraction | Capacity
Shortage | Unmet | | CO2 | co | uuc l | PM S | 02 N | Genset
Ox Fuel | | Genset
Starts | | Throughput | | 160 | kW | | Quantity | Lim | Case | rotal Capital Cost | rotal NPC | cost | \$/vr | COSC
C Ave | | \$/vr | S/kWh | kWh/vr | | | kWh/vr | Fraction | kWh/vr | | kWh/vr | lum/um | lun/un | kg/yr | | | /vr I /vr | | starts/vr | Autonomy | kWh/vr | | 2014 | | | 1.000 | 150 | Var | 987.327 | 1.538.371 | 25.180 | | 28.739 | 163.005 | | | | 94 436 | | | 759 | | KWIII/YI | 173.75 | 5 82.980 | 205 | | 15 | | .828 31.512 | | 110 | 12.14 | | | 2016 | | | 1,100 | 150 | | 884,282 | 1,368,719 | 20,602 | | 22,932 | 135,972 | | | | 91,060 | 610,245 | | | | 1 0 | 170.81 | 1 80.091 | | 22 | 15 | | .764 30,414 | | 91 | 13.35 | | | 2018 | | 144 | 1,100 | 150 | | 1.032.030 | 1,715,342 | 20,353 | | 23,054 | 120,491 | 47,991 | | | 91,060 | 610,245 | | | | 1 0 | 170,81 | 90,001 | 100 | 22 | 15 | | 1.764 30,414 | | 91 | 13.35 | | | 2020 | | | 1,100 | 150 | | 933,933 | 1,646,487 | 18.842 | | 24,103 | 109,897 | 47,56 | | | 90,661 | 609.845 | | | | 1 0 | 170,36 | 80.040 | 198 | 22 | | | .763 30.395 | | 91 | 13.35 | | | 2023 | | 144 | 1.100 | 150 | | 858 157 | 1.567.804 | 17.498 | 4,644 | | 104,646 | 47.36 | | | 90,275 | 609,459 | | | |) 0 | 170.14 | | 198 | 22 | 15 | | .763 30.39 | | 94 | 13.35 | | | 2024 | | 144 | 1.100 | 150 | | 794,730 | 1,497,361 | 16.241 | | | 99,944 | | | | 89.844 | | | | | 0 0 | 169.76 | 79,745 | 197 | 22 | 15 | 160 1 | ,756 30,283 | | 93 | 13.35 | | | 2026 | 400 | 144 | 1.100 | 150 | Yes | 752,224 | 1.451.236 | 15,196 | 4,655 | 26.806 | 96,865 | 46.65 | 0.254 | 519.184 | 89,594 | 608,778 | 381.10 | 769 | | 0 | 169.46 | 79.671 | 197 | 22 | 15 | | 1.755 30.255 | 5 682 | 93 | 3 13.35 | 218.976 | | 2028 | 450 | 144 | 1,150 | 150 | Yes | 791,671 | 1,419,135 | 14,215 | 4,392 | 23,275 | 94,722 | 41,88 | 0.249 | 584,083 | 75,421 | 659,504 | 381,10 | 80% | | 0 | 220,36 | 67,277 | 166 | 18 | 13 | 135 1 | ,482 25,548 | 8 581 | 77 | 13.96 | 218,607 | | 2030 | | 144 | 1,200 | 150 | | 769,433 | 1,387,910 | 13,775 | | 23,109 | 92,638 | | | | 73,286 | | | | | 0 | 217,99 | | 161 | 18 | | | ,433 24,715 | | 69 | 14.57 | | | 2032 | | 144 | 1,200 | 150 | | 764,357 | 1,389,018 | | | 23,751 | 92,712 | | | | 73,286 | 657,369 | | | | 0 | 217,99 | 65,083 | 161 | 18 | 12 | | ,433 24,715 | | 69 | 9 14.57 | | | 2034 | | 144 | 1,200 | 150 | | 756,185 | 1,392,053 | 13,378 | | 24,666 | 92,915 | | | | 73,286 | 657,369 | | | | 0 | 217,99 | 65,083 | 161 | 18 | 12 | | ,433 24,715 | | 69 | 9 14.57 | | | 2036 | | 144 | 1,200 | 150 | | 748,733 | 1,391,117 | 13,245 | | 25,234 | 92,852 | | | | 73,286 | | | | | 0 | 217,99 | | 161 | 18 | | | ,433 24,715 | | 69 | 14.57 | | | 2038 | | 144 | 1,200 | 150 | | 746,153 | 1,395,294 | | | 25,802 | 93,131 | | | | 73,286 | | | | | 0 | 217,99 | | | 18 | 12 | | ,433 24,715 | | 69 | 14.57 | | | 2040 | | | 1,200 | 150 | | 739,229 | 1,400,800 | 13,018 | | | 93,499 | | | | 73,286 | 657,369 | | | | 0 | 217,99 | | | 18 | 12 | | 1,433 24,715 | | 69 | 14.57 | | | 2042 | | | 1,200 | 150 | | 736,637 | 1,384,966 | 12,900 | | 25,975 | 92,442 | | | | 73,286 | | | | | 0 | 217,99 | 65,083 | | 18 | 12 | | ,433 24,715 | | 69 | 9 14.57 | | | 2044 | | 144 | 1,200 | 150 | | 729,617 | 1,382,536 | 12,786 | | 26,396 | 92,280 | | | | 73,286 | 657,369 | | | | 0 | 217,99 | 65,083 | | 18 | 12 | | ,433 24,715 | | 69 | 14.57 | | | 2046 | | 144 | 1,200 | 150 | | 727,193 | 1,385,121 | 12,676 | 4,398 | | 92,452 | | | | 73,286 | 657,369 | | | | 0 | 217,99 | 65,083 | | 18 | 12 | | ,433 24,715 | | 65 | 14.57 | | | 2048 | 450 | 144 | 1,200 | 150 | | 720,329 | 1,382,710 | 12,528 | | 27,285 | 92,291 | | | | 73,286 | 657,369 | | | 1 . | 1 0 | 217,99 | | | 18 | | | ,433 24,715 | | 65 | 14.57 | | | 2050 | 450 | 144 | 1,200 | 150
200 | | 718,049 | 1,385,173 | 12,425 | 4,398
4,752 | 27,705 | 92,456 | | | | 73,286 | 657,369 | | | 1 - 1 | 0 | 217,99 | 65,083 | | 18 | | | ,433 24,715 | | 65 | 9 14.57 | | | Sunshot | 450 | 144 | 1,600 | 200 | res | 556,645 | 1,030,161 | 11,320 | 4,752 | 15,534 | 68,760 | 31,60 | 0.18 | 584,083 | 58,496 | 642,579 | 381,10 | 85% | 1 ' | 기 0 | 201,86 | 51,585 | 127 | 14 | 10 | 104 1 | 1,136 19,589 | J 431 | 44 | 19.42 | 224,206 | | | | | | | | | | | | | | Combin | ed Improv | ement - W | estchester (| commercial (wi | th Genset) | | | | | | | | | | | | | | | | |------------------------------|---------------|---------------|-------------|-----------|-----------------|---------------|-----------|------------------|-----------|------------|--------------|-----------|-----------|------------|--------------|------------------|-------------|-----------|----------|------------|-------------|--------|-------|-------|---------------|-------|-------|-------------|--------|-----------|----------|-----------| Emi | issions | | | 1 | | | | | | | $\overline{}$ | | | | | Total Capital | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | | Excess | | | | $\overline{}$ | | | | Genset | Genset | Battery | Battery | | Battery Projection Study | PV | Diesel Genset | 1kWh Li-ion | Converter | Efficiency Case | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | COE | Production | Production | Production | Load Served | Fraction | Shortage | Unmet Load | Electricity | CO2 | co | UHC | PM | SO2 | NOx | Gerset Fuel | Hours | Starts | Autonomy | Throughpu | | | kW | kW | Quantity | kW | | \$ | \$ | S/yr | S/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | L/yr | hr/yr | starts/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 500 | 14 | 4 1,1 | 00 150 | Yes | 729,889 | 1,333,655 | 17,689 | 4,061 | 18,549 | 89,017 | 40,299 | 0.234 | | 69,739 | | | 0.82 | | | 280,293 | 61,595 | 152 | 1 | 7 1 | 1 12 | 1,35 | 23,391 | 517 | 72 | 2 13.35 | | | Deutsche Bank | 500 | 14 | 1,1 | 00 150 | Yes | 635,971 | 1,178,743 | 13,456 | 4,094 | 18,678 | 78,677 | 36,228 | 0.206 | 648,98 | 69,978 | 718,95 | 381,10 | 0.82 | | | 280,555 | 62,025 | 153 | 1 | 7 1 | 2 12 | 1,366 | 23,554 | 526 | 72 | 2 13.35 | 215,55 | | McKinsey | 500 | 14 | 1,1 | 00 150 | Yes | 602,718 | 1,122,908 | 11,949 | 4,094 | 18,678 | 74,950 | 34,721 | 0.197 | 648,98 | 69,978 | 718,95 | 381,10 | 0.82 | | | 280,555 | 62,025 | 153 | 1 | 7 1 | 2 12 | 1,366 | 23,554 | 526 | 72 | 2 13.35 | 215,55 | | Department of Energy | 450 | 14 | 1,6 | 00 200 | Yes | 556,629 | 1,030,149 | 11,320 | 4,752 | 15,534 | 68,759 | 31,606 | 0.18 | 584,08 | 58,496 | 642,57 | 381,10 | 0.85 | | - | 201,862 | 51,585 | 127 | 1- | 4 1 | 0 10 | 1,136 | 19,589 | 431 | 44 | 4 19.42 | 224,20 | ## COMMERCIAL TABLES - LOUISVILLE, KY | | | | | | | | | | | В | ace Cac | o - Louisvil | e Commer | cial (with Gen | cot) | | | | | | | | | | | | | | | |------------|---------------|-------------|------------|--------------------|-----------|------------------|----------------|------------------|--------------------|-----------|---------|--------------------|------------------|--------------------|-------------|-----------|----------|--------|-------------|---------|---------|--------|---------|-----------|----------------------|--------|----------|----------------|--------------------| | | | | | | | | | | | - | usc cus | C - LOUISVIII | c commic | ciui (with och | JC () | | | | | | | Emissi | ons | | \neg | | | | | | | | | | | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | | | Gense | Genset | Genset | Battery | Battery | | Year PV | Diesel Genset | 1kWh Li-ion | Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | | | | | | | Production | Load Served | | Shortage | Load | Electricity | CO2 | co u | HC F | M SC | 2 NOx | Fuel | Hours | Starts | | Throughput | | kW | kW | Quantity | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr k | g/yr k | g/yr kg | /yr kg/yr | L/yr | hr/yr | starts/y | hr | kWh/yr | | 2014 50 | | 1,750 | 250 | | 2,140,003 | 29,431 | 7,351 | 45,144 | | | 0.375 | 679,488 | 148,704 | 828,193 | | | |) (| 132,286 | | 322 | 36 | | 262 2, | | | | 20.28 | | | 2016 50 | | 1,750 | 250 | | 1,884,890 | | 7,355 | 37,341 | | | | | 148,750 | 828,238 | | | (|) (| 132,325 | | 322 | 36 | | | 372 49,5 | | | 20.28 | | | 2018 55 | | 1,700 | 200 | | 2,368,351 | 24,086 | | 34,325 | | | 0.275 | | 134,672 | 882,108 | | | |) (| 186,244 | | 294 | 33 | | | 26 45,2 | | | 19.7 | 341,262 | |
2020 55 | | 1,700 | 250 | | 2,279,451 | 21,923 | 7,034 | 36,175 | | | 0.252 | | 135,960 | 883,396 | | | - (|) (| 188,013 | | 297 | 33 | | | 45,6 | | | 19.7 | | | 2022 55 | | 1,700 | 250 | 1,193,680 | | 19,783 | 7,045 | 37,904 | 144,407 | | 0.239 | | 136,015 | 883,451 | 604,809 | | | 1 | 188,029 | | 297 | 33 | | | 45,6 | | | 19.7 | 339,355 | | 2024 60 | | 1,750 | 250 | | 2,058,506 | 17,771 | 6,763 | 34,608 | 137,398 | | 0.227 | | 119,393 | 934,778 | | | |) (| 239,081 | 106,092 | 262 | 29 | | | 37 40,2 | | 0 80 | 20.28 | | | 2026 65 | | 1,900 | 250 | | 1,987,663 | 16,523 | 6,556 | 30,122 | 132,670 | | 0.219 | | 100,710 | 984,045 | 604,809 | | | 1 | 287,697 | 89,526 | 221 | 24 | | 180 1, | | | 5 62 | 22.02 | 343,153 | | 2028 65 | | 2,050 | 250 | | 1,931,409 | | 6,628 | 28,470 | | | 0.213 | | 92,652 | 975,988 | | | (| 1 | 279,022 | | 203 | 23 | | | 31,2 | | | 23.76 | | | 2030 65 | | 2,050 | 250 | | 1,877,350 | | 6,628 | 29,220 | | | 0.207 | 883,335 | 92,652 | 975,988 | | | | 1 | 279,022 | | 203 | 23 | | | 31,2 | | | 23.76 | | | 2032 65 | | 2,050 | 250 | | 1,874,968 | 14,194 | 6,628 | 30,032 | | | | 883,335 | 92,652 | 975,988 | | | | 1 | 279,022 | 82,294 | 203 | 23 | | | 31,2 | | | 23.76 | 345,554 | | 2034 65 | | 2,050 | 250 | | 1,875,259 | 13,910 | | 31,189 | 125,167 | | | | 92,652 | 975,988 | | | | 1 | 279,022 | | 203 | 23 | | | 31,2 | | | 23.76 | 345,554 | | 2036 65 | | 2,050 | 250
250 | | 1,871,068 | 13,682
13,481 | 6,628
6.628 | 31,907
32.626 | 124,887
125.111 | | 0.206 | 883,335
883,335 | 92,652
92.652 | 975,988
975,988 | | | | | 279,022 | | 203 | 23 | | | 31,2
31,3
31,2 | | | 23.76
23.76 | 345,554
345,554 | | 2038 65 | | 2,050 | 300 | | 1,874,424 | 13,481 | 6,828 | 29.800 | 125,111 | | 0.207 | 883,335
883,335 | 92,652
81.656 | 9/5,988 | 604,809 | | - | 1 | 265,960 | | 170 | 20 | | | 97 27,5 | | | 26.66 | | | 2040 65 | | 2,300 | 300 | | 1,855,944 | 14,323 | 6.828 | 28,947 | 123,289 | | 0.207 | | 81,656 | 964,992 | 604,809 | | _ | | 265,960 | | 170 | 20 | | 146 1. | | | | 26.66 | | | 2042 65 | | 2,300 | 300 | | 1,833,944 | 14,303 | 6.828 | 29,415 | | | 0.203 | | 81,656 | 964,992 | | | | | 265,960 | | 170 | 20 | | 146 1. | | | | 26.66 | | | 2044 65 | | 2,300 | 300 | | 1,847,970 | 13.874 | 6.828 | 29,911 | | | | | 81,656 | 964,992 | | | - | 1 | 265,960 | 72,527 | 170 | 20 | | | 97 27,5 | | | 26.66 | | | 2048 65 | | 2,300 | 300 | 1.078.673 | | 13,587 | 6.828 | 30,406 | 122,819 | | 0.204 | 883,335 | 81,656 | 964,992 | | | _ | 1 | 265,960 | | 170 | 20 | | | 97 27,5 | | | 26.66 | | | 2050 65 | | 2,300 | 300 | | 1.839.745 | 13,389 | | 30,875 | 122,797 | | 0.203 | | 81,656 | 964,992 | 604,809 | | - | | 265,960 | | 179 | 20 | | | 97 27.5 | | | 26.66 | | | Sunshot 65 | | 2,300 | 300 | | 1,330,149 | | 6,828 | 21.841 | | | | | 81,656 | 964,992 | | | | | 265,960 | | 179 | 20 | | | 97 27,5 | | 4 46 | 26.66 | | | | | | | | | | | | Race Case | a - Louisville | Comr | nercial (wit | hout Gense | n+) | | | | | | | | — | | | | | |---------|-------|-------------|-----------|--------------------|-----------|------------------|-----------|------------|--------------|----------------|--------|---------------|--------------|-------------|-----------|----------|--------|-------------|-------|-------|-------|-------|-------|-------|----------|------------| | | | | | | | | | | Dase Case | - LOUISVIII | Com | ilerciai (wit | ilout delise | , | | | | | | | Emis | sions | | | 1 | | | | | | | | | | | | | | | | Total | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | 1 | | | | | | Battery | Battery | | Yea | PV | 1kWh Li-ion | Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | | | | Production | Load Served | Fraction | Shortage | Load | Electricity | | | | | | | Autonomy | Throughput | | | kW | | kW | \$ | \$ | \$/yr | | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | hr | kWh/yr | | 2014 | | | 350 | 3,563,187 | | | | 0 | 457,489 | | 0.757 | 1,970,515 | | | | 605 | | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2016 | | | 350 | 3,051,798 | | | | | 372,316 | | 0.616 | 1,970,515 | | | | 605 | | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2018 | | | 350 | 3,605,210 | | 58,742 | | 0 | 321,282 | | | | 1,970,515 | | | 605 | | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2020 | | | 350 | 3,229,504 | | 52,351 | | 0 | 277,210 | | | 1,970,515 | | | | 605 | | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2022 | | | 350 | 2,941,360 | | | | 0 | 252,271 | 55,945 | | 1,970,515 | | | | 605 | | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2024 | | | 350 | 2,697,760 | | | 9,300 | 0 | 230,854 | | 0.382 | | | | | 605 | | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2026 | | | 350 | 2,530,121 | | | | 0 | 215,256 | | | | | | 100% | 605 | | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2028 | | | 350 | 2,424,814 | | | | 0 | 204,767 | | 0.339 | 1,970,515 | | | | 605 | | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2030 | | | 350 | 2,320,712 | | | | 0 | 195,134 | | 0.323 | | | | | 605 | | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2032 | | | 350 | | | | 9,300 | | 192,931 | 39,344 | 0.319 | 1,970,515 | | | | 605 | 524 | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2034 | | | 350 | 2,272,314 | | | | | 190,368 | | 0.315 | | | 604,284 | | 605 | | | | 0 | 0 | 0 | 0 | 0 | 53.89 | | | 2036 | | 6,600 | 450 | 2,008,338 | | | 13,200 | | 187,987 | 53,937 | 0.311 | 1,358,977 | 1,358,977 | 604,318 | | 575 | | | | 0 | 0 | 0 | 0 | 0 | 76.49 | | | 2038 | | 6,600 | 450 | 1,994,148 | | | 13,200 | | 186,394 | | 0.308 | 1,358,977 | | 604,318 | | 575 | | | | 0 | 0 | 0 | 0 | 0 | 76.49 | | | 2040 | | 6,600 | 450 | 1,970,816 | | | | | 184,234 | | 0.305 | 1,358,977 | 1,358,977 | 604,318 | | 575 | | | | 0 | 0 | 0 | 0 | 0 | 76.49 | | | 2042 | | 6,600 | 450 | 1,956,560 | | | 13,200 | | 182,635 | | | 1,358,977 | | 604,318 | | 575 | | | | 0 | 0 | 0 | 0 | 0 | 76.49 | | | 2044 | | 6,600 | 450 | 1,932,700 | | 38,216 | | | 180,417 | 51,416 | 0.299 | 1,358,977 | 1,358,977 | 604,318 | | 575 | | | | 0 | 0 | 0 | 0 | 0 | 76.49 | | | 2046 | | 6,600 | 450 | 1,919,368 | | | | | 178,919 | | 0.296 | | | 604,318 | | 575 | | 660,660 | | 0 | 0 | 0 | 0 | 0 | 76.49 | | | 2048 | | 6,600 | 450 | 1,896,366 | | | | | 176,674 | | 0.292 | 1,358,977 | 1,358,977 | 604,318 | | 575 | | | | 0 | 0 | 0 | 0 | 0 | 76.49 | | | 2050 | | 6,600 | 450 | 1,883,826 | | | | | 175,268 | | 0.29 | 1,358,977 | 1,358,977 | 604,318 | | 575 | | | | 0 | 0 | 0 | 0 | 0 | 76.49 | | | Sunshot | 1,000 | 6,600 | 450 | 1,294,828 | 1,855,354 | 24,213 | 13,200 | 1 0 | 123,839 | 37,413 | 0.205 | 1,358,977 | 1,358,977 | 604,318 | 100% | 575 | 491 | 660,660 | ol d | ol o | 1 0 | 0 | 0 | 0 | 76.49 | 357,125 | | | | | | | | | | | | Accelerated | Technolo | gy Improve | ment - Lou | isville Com | mercial (with | Genset) | | | | | | | | | | | | | | | |------------------------------|-----|---------------|-------------|-----------|---------------|-----------|------------------|-----------|------------|--------------|-----------|------------|------------|-------------|------------------|-------------|-----------|----------|--------|-------------|--------|-------|--------|-------|---------|------------|----------|-----------|----------|------------| Emissi | ions | | | | | | | | | | | | | Total Capital | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | | | Gens | et Gense | et Genset | Battery | Battery | | Battery Projection Study | PV | Diesel Genset | 1kWh Li-ion | Converter | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | COE | Production | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | CO2 | co | UHC | PM | SO2 N | Ox Fuel | Hours | s Starts | Autonomy | Throughput | | | kW | kW | Quantity | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr k | s/yr L/yr | hr/yr | starts/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 750 | 150 | 1,700 | 250 | 1,067,084 | 1,822,651 | 19,565 | 5,943 | 24,924 | 121,656 | 50,432 | 0.201 | 1,019,23 | 93,177 | 1,112,408 | 604,809 | 0.85 | 0 | 0 | 417,290 | 82,766 | 204 | 23 | 15 | 166 | ,823 31,4 | 30 6 | .78 63 | 19." | .7 337,85 | | Deutsche Bank | 750 | 150 | 1,700 | 250 | 921,938 | 1,581,569 | 13,040 | 5,980 | 25,008 | 105,564 | 44,028 | 0.175 | 1,019,23 | 93,119 | 1,112,350 | 604,809 | 0.85 | 0 | 0 | 417,184 | 83,044 | 205 | 23 | 15 | 167 | ,829 31,5 | 36 6 | 88 6? | 19. | .7 338,02 | | McKinsey | 700 | 150 | 1,850 | 200 | 846,684 | | | 6,359 | 25,353 | | | 0.165 | | | | | 0.84 | 0 | 0 | 349,273 | 84,190 | 208 | 23 | 16 | 169 | 1,854 31,9 | 71 7 | 09 60 | 21.44 | 4 341,03 | | Department of Energy | 650 | 150 | 2,300 | 300 | 766,811 | 1,330,126 | 8,931 | 6,828 | 21,841 | 88,781 | 37,599 | 0.147 | 883,33 | 81,656 | 964,992 | 604,809 | 0.86 | 0 | 0 | 265,960 | 72,527 | 179 | 20 | 13 | 146 | 1,597 27,5 | 42 5/ | 94 46 | 26.66 | 6 350,97 | | Battery OFM | 700 | 150 | 2 700 | 250 | 790.269 | 1.266.643 | 7.892 | 7 125 | 16 779 | 84 544 | 31 796 | 0.14 | 951.28 | 62 556 | 1 013 839 | 604 809 | 0.9 | 0 | 0 | 315 562 | 55 719 | 138 | 15 | 10 | 112 | 1 227 21 1 | 59 4 | 60 31 | 31.29 | 9 354 38 | | | | | | | | | | | | | De | mand-side I | mproveme | nt - Louisvi | lle Commer | cial (with Gen | set) | | | | | | | | | | _ | | | | | |---------|-----------|---------------|-------------------|-----------|------------|--------------------|------------|------------------|--------------|----------------|-------------|-------------|----------------|----------------------|----------------------|-------------------|-----------------------|-----------|--------------------|--------|---------|----------
-----|----------------|-------|--------|------------------|--------------|-----------|---------------|----------------------| <u> </u> | | Emission | 5 | Efficiency | | | | Total O&M | | | Operating | | PV | | Total Electrical | | Renewable | | Unmet | | | | | | | | | Genset | | Battery | | Year | | Diesel Genset | | Converter | Lase | Total Capital Cost | I OTAI NPL | Replacement Cost | Cost
S/vr | Cost
S/vr | Annual Cost | \$/vr | | Production
kWh/vr | Production
kWh/vr | | Load Served
kWh/vr | | Shortage
kWh/vr | | | | | UHC PN | | | Fuel | Hours | Starts | Autonomy | Throughput
kWh/vr | | 2011 | kW
350 | kW 150 | Quantity
1.150 | kW | Yes | 959.542 | 1.526.734 | \$/yr
24.880 | | 5/yr
30.287 | | | 5/kWh
0.405 | | kWh/yr
99.143 | kWh/yr
574,784 | | | | kWh/yr | | | | kg/yr kg
24 | | | L/yr
6 33.210 | hr/yr
702 | starts/yr | hr
1 13.33 | | | 2014 | | | | | Yes | 959,542
833,263 | 1,357,403 | | | 25.040 | 134,848 | | 0.405 | | 99,143 | 574,784 | | | | 0 0 | | 87,452 | 216 | 24 | | | 6 33,210 | | | | | | 2016 | | | | | Yes | 983,263 | 1,357,403 | | 4,933 | 25,040 | 134,848 | 50,902 | 0.338 | | 99,143 | 574,784 | | 75% | | 0 0 | 108.989 | | 206 | 23 | | | 2 31.765 | | | | | | 2010 | | | | | Yes | 960,863 | 1,648,517 | | | 21,449 | 110.033 | 45.899 | 0.301 | | 79,344 | 622.934 | | 80% | | 0 0 | 161.581 | | 176 | 19 | | | 9 27.048 | | | 3 13.91 | | | 2022 | | 150 | | | Yes | 882.471 | 1,563,118 | | 4,654 | 22,448 | 104.333 | 45,431 | 0.276 | | 79,344 | 622,733 | | 80% | | 0 0 | 161,382 | | 176 | 19 | 13 14 | | 9 27,046 | | | 3 13.91 | | | 2024 | | | | | Yes | 878.187 | 1.487.815 | | | 19,740 | 99,307 | 40,691 | 0.249 | | 67,631 | 679,170 | | 83% | | 0 0 | 218.288 | | 149 | 17 | | | 3 22,980 | | | 8 13.91 | | | 2026 | | | | | Yes | 831.135 | 1,433,584 | | | 20,401 | 95,687 | 40,031 | 0.24 | | 67,721 | 679,260 | | 83% | | 0 0 | 218 384 | | 150 | 17 | 11 12 | | 6 23.026 | | | 8 13.91 | | | 2028 | | 150 | | | Yes | 802,443 | 1,400,139 | | | 20,977 | 93,455 | 39,894 | 0.234 | | 67,721 | 679,260 | | 83% | | 0 0 | 218 384 | | 150 | 17 | | 2 1.33 | | | | 8 13.91 | | | 2030 | | | | | Yes | 772,707 | 1.368.060 | | | 21.529 | 91.313 | 39,738 | 0.229 | | 67,721 | 679,260 | | 83% | | 0 0 | 218.384 | | 150 | 17 | 11 12 | | 6 23.026 | | 6 | 8 13.91 | | | 2032 | | | | | Yes | 767,631 | | | | 22.128 | 91,343 | 40,107 | 0.229 | | 67,721 | 679,260 | | 83% | | 0 0 | 218.384 | | 150 | 17 | 11 12 | | 6 23,026 | | 6 | 8 13.91 | | | 2034 | 450 | 150 | 1.200 | 150 | Yes | 759,459 | 1.370.608 | 13,507 | 4,305 | 22,980 | 91,483 | 40,792 | 0.229 | 611.540 | 67.721 | 679,260 | 399,174 | 83% | | 0 0 | 218 384 | 60 636 | 150 | 17 | 11 12 | 2 1 33 | 6 23.026 | 508 | 6 | 8 13.91 | 1 231.754 | | 2036 | 450 | 150 | 1.200 | 200 | Yes | 758,007 | 1.369.069 | 13.568 | 4,200 | 23.018 | 91.381 | 40,786 | 0.229 | 611.540 | 67.140 | 678,680 | 399.174 | 83% | | 0 0 | 217.810 | 59.368 | 147 | 16 | 11 11 | 9 1.30 | 8 22.549 | 480 | 6 | 5 13.91 | 1 231,729 | | 2038 | 450 | 150 | 1,200 | 200 | Yes | 755,427 | 1,372,990 | 13,453 | | 23,563 | 91,642 | 41,220 | 0.23 | 611,540 | 67,192 | 678,732 | 399,174 | 83% | | 0 0 | 217,870 | 59,434 | 147 | 16 | 11 11 | 9 1,30 | 9 22,570 | 481 | . 6 | 5 13.91 | 1 231,701 | | 2040 | 450 | 150 | 1,200 | | Yes | 748,503 | 1,377,275 | 13,344 | | 24,421 | 91,928 | 41,968 | 0.23 | 611,540 | 67,192 | 678,732 | | 83% | | 0 0 | 217,870 | 59,434 | 147 | 16 | 11 11 | 9 1,30 | 9 22,570 | 481 | 6 | 5 13.91 | 1 231,701 | | 2042 | 450 | 150 | 1,200 | 200 | Yes | 745,911 | 1,362,436 | 13,226 | 4,204 | 23,721 | 90,938 | 41,151 | 0.228 | 611,540 | 67,192 | 678,732 | 399,174 | 83% | | 0 0 | 217,870 | 59,434 | 147 | 16 | 11 11 | 9 1,30 | 9 22,570 | 481 | . 6 | 5 13.91 | 1 231,701 | | 2044 | 450 | 150 | 1,200 | 200 | Yes | 738,891 | 1,359,460 | 13,112 | 4,204 | 24,105 | 90,739 | 41,421 | 0.227 | 611,540 | 67,192 | 678,732 | 399,174 | 83% | | 0 0 | 217,870 | 59,434 | 147 | 16 | 11 11 | 9 1,30 | 9 22,570 | 481 | . 6 | 5 13.91 | 1 231,701 | | 2046 | | 150 | | | Yes | 734,833 | 1,361,100 | | | 21,629 | 90,849 | 41,801 | 0.228 | | 58,978 | 602,568 | 399,174 | 85% | | 0 0 | 139,627 | 52,447 | 129 | 14 | 10 10 | | 5 19,917 | | 4 | 6 19.12 | | | 2048 | 400 | 150 | 1,650 | | Yes | 727,582 | 1,356,205 | | | 21,988 | 90,522 | 41,958 | 0.227 | | 58,978 | 602,568 | | 85% | | 0 0 | 139,627 | | 129 | 14 | 10 10 | 1,15 | 5 19,917 | 431 | 4 | 6 19.12 | | | 2050 | 400 | 150 | | | Yes | 724,447 | 1,356,008 | | | 22,326 | 90,509 | 42,155 | 0.227 | | 58,978 | 602,568 | 399,174 | 85% | | 0 0 | 139,627 | | 129 | 14 | 10 10 | | 5 19,917 | | 4 | 6 19.12 | | | Sunshot | 400 | 150 | 1,650 | 200 | Yes | 525,698 | 1,011,853 | 11,739 | 4,916 | 15,794 | 67,538 | 32,449 | 0.169 | 543,590 | 58,978 | 602,568 | 399,174 | 85% | | 0 0 | 139,627 | 52,447 | 129 | 14 | 10 10 | 5 1,15 | 5 19,917 | 431 | 4 | 6 19.12 | 2 239,102 | | | | | | | | | | | | | | Comb | ined Impro | wement - L | ouisville Co | mmercial (with | Genset) | | | | | | | | | | | | | | | | |------------------------------|-----|---------------|-------------|-----------|-----------------|---------------|-----------|------------------|-----------|------------|--------------|-----------|------------|------------|--------------|------------------|-------------|-----------|----------|-----------|-------------|--------|-------|-------|---------------|-------|---------|-------------|--------|-----------|----------|------------| Emi | issions | | | 1 | | | | | | | | | | | | Total Capital | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | | Excess | | | Т | $\overline{}$ | | Т | | Genset | Gerset | Battery | Battery | | | PV | Diesel Genset | 1kWh Li-ion | Converter | Efficiency Case | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | | | Production | Production | Load Served | Fraction | Shortage | Unmet Loa | Electricity | CO2 | co | UHC | PM | 502 | NOx | Gerset Fuel | Hours | Starts | Autonomy | Throughput | | | kW | kW | Quantity | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | S/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | L/yr | hr/yr | starts/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 500 | 150 | 1,1 | 50 15 | 0 Yes | 744,989 | 1,329,917 | 18,307 | 4,006 | 16,729 | 88,767 | 39,042 | 0.222 | 679,488 | 62,541 | 742,030 | 399,174 | 0.84 | | 0 | 281,80 | 55,551 | 13 | 1 1 | 5 10 | 0 11 | 2 1,224 | 21,095 | 45 | 5 6 | 53 13.33 | 3 229,004 | | Deutsche Bank | 500 | 150 | 1,1 | 50 15 | 0 Yes | 646,802 | 1,165,919 | 13,876 | 4,033 | 16,741 | 77,821 | 34,649 | 0.195 | 679,488 | 62,267 | 741,756 | 399,174 | 0.84 | | 0 | 281,52 | 55,592 | 13 | 1 | 5 10 | 0 11 | 2 1,224 | 21,111 | 46 | 2 6 | 3 13.3? | 3 229,045 | | McKinsey | 450 | 150 | 1,2 | 00 20 | D Yes | 584,083 | | 12,803 | 4,200 | 17,878 | 73,867 | 34,882 | 0.185 | 611,540 | | 678,680 | | 0.83 | | 0 | 217,81 | 59,368 | 14 | 1 1 | 5 1: | 1 11 | 9 1,308 | 22,545 | 48 | 0 6 | 55 13.91 | | | Department of Energy | 400 | 150 | 1,6 | 50 20 |) Yes | 525,681 | | | 4,916 | 15,794 | 67,537 | 32,449 | 0.169 | 543,590 | | 602,568 | | 0.85 | 5 | 0 | 139,62 | 52,447 | 129 | 1- | 1 10 | 0 10 | 5 1,155 | 19,917 | 43 | 1 4 | 16 19.12 | | | Battery OEM | 450 | 150 | 2,0 | 00 20 | 0 Yes | 559,931 | 966,154 | 11,175 | 5,099 | 10,840 | 64,488 | 27,114 | 0.162 | 611,540 | 40,613 | 652,153 | 399,174 | 0.9 | 9 | 0 | 189,90 | 35,996 | 8 | 1 | 1 | 7 7. | 2 793 | 13,669 | 29 | 3 2 | 28 23.18 | 239,535 | ## COMMERCIAL TABLES - SAN ANTONIO, TX | _ | | | | | | | | | | | _ |---------|-----|---------------|----------|-----------|--------------------|-----------|------------------|-----------|------------|---------|-----------|---------|------------|-----------|------------------|-------------|-----------|----------|--------|-------------|--------|------|--------|-----|----------|---------|-------|-----|------------|----------|------------| | | | | | | | | | | | | Ва | se Case | - San Anto | nio Comme | ercial (with Ge | nset) | Emissi | ons | | | | | | | | | | | | | | | | Total Annual | Total O&M | Total Fuel | | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | | | | | | | Battery | Battery | | Year | | Diesel Genset | | Converter | Total Capital Cost | Total NPC | Replacement Cost | | Cost | Cost | | | | | Production | Load Served | Fraction | Shortage | | Electricity | CO2 | CO L | IHC P | M S | D2 NC | x Fu | H H | | | Autonomy | Throughput | | | kW | kW | Quantity | kW | \$ | \$ | \$/yr | | \$/yr | \$/yr | | | | | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | | g/yr k | | g/yr kg/ | yr L/y | r h | | starts/yel | | kWh/yr | | | 550 | 156 | 1,900 | 250 | 1,487,759 | 2,121,217 | | 6,460 | 30,534 | 224,763 | 67,121 | 0.335 | 853,328 | 99,874 | 953,201 | | 85% | | 0 (| 182,318 | | 218 | 24 | | 177 | | 3,480 | 682 | 66 | 19.86 | 375,537 | | | 550 | 156 | 1,900 | 250 | | 1,861,155 | | 6,460 | | | | 0.276 | | 99,764 | 953,092 | | 85% | | 0 (| 182,207 | | 217 | 24 | | | | 3,453 | 682 | 66 | 19.86 | 375,542 | | | 550 | 156 | 1,900 | 250 | | 2,315,300 | | 6,460 | | 162,634 | | 0.243 | | 99,764 | 953,092 | 670,504 | 85% | | 0 (| 182,207 | | 217 | 24 | | | | 3,453 | 682 | 66 | 19.86 | 375,542 | | | 600 | 156 | 1,850 | 250 | | 2,179,780 | | 6,067 | 22,880 | 145,493 | | 0.217 | 930,904 | | 1,016,012 | | 87% | | 0 (| 245,888 | 75,979 | 188 | 21 | 14 | 153 | | 8,853 | 607 | 57 | 19.34 | 374,491 | | 2022 | 600 | 156 | 1,850 | 250 | 1,294,240 | 2,041,414 | 19,847 | 6,079 | 23,945 | 136,257 | 49,871
| 0.203 | 930,904 | 84,947 | 1,015,851 | 670,504 | 87% | 5 | 0 (| 245,654 | 75,971 | 188 | 21 | 14 | 153 | 1,673 | 8,850 | 610 | 57 | 19.34 | 374,760 | | | 600 | 156 | 1,850 | 250 | 1,194,136 | 1,921,351 | | 6,079 | 24,782 | 128,244 | | 0.191 | 930,904 | 84,947 | 1,015,851 | 670,504 | 87% | 5 | 0 (| 245,654 | 75,971 | 188 | 21 | 14 | 153 | 1,673 | 8,850 | 610 | 57 | 19.34 | 374,760 | | | 600 | 156 | 1,850 | 250 | 1,126,285 | 1,838,286 | 15,852 | 6,083 | 25,589 | 122,699 | 47,524 | 0.183 | 930,904 | 85,023 | 1,015,927 | 670,504 | 87% | 5 | 0 (| 245,729 | 76,054 | 188 | 21 | 14 | 153 | 1,675 | 8,881 | 611 | 57 | 19.34 | 374,766 | | 2028 | 600 | 156 | 1,850 | 250 | 1,083,926 | 1,785,537 | 14,436 | 6,083 | 26,311 | 119,179 | 46,830 | 0.178 | 930,904 | 85,023 | 1,015,927 | 670,504 | 87% | 5 | 0 (| 245,729 | 76,054 | 188 | 21 | 14 | 153 | 1,675 | 8,881 | 611 | 57 | 19.34 | 374,766 | | 2030 | 600 | 156 | 1,900 | 250 | 1,047,592 | 1,735,782 | 13,269 | 6,167 | 26,498 | 115,858 | 45,934 | 0.173 | 930,904 | 83,057 | 1,013,961 | 670,504 | 88% | | 0 (| 243,351 | 74,628 | 184 | 20 | 14 | 150 | 1,644 2 | 8,340 | 607 | 57 | 19.86 | 376,290 | | 2032 | 600 | 156 | 2,250 | 250 | 1,086,263 | 1,729,231 | 14,639 | 6,392 | 21,885 | 115,420 | 42,916 | 0.172 | 930,904 | 66,881 | 997,785 | 670,504 | 90% | 5 | 0 (| 225,949 | 59,969 | 148 | 16 | 11 | 120 | 1,321 2 | 2,773 | 485 | 41 | 23.52 | 383,031 | | | 600 | 156 | 2,250 | 250 | 1,073,378 | 1,724,299 | | 6,392 | 22,728 | 115,091 | | 0.172 | | 66,881 | 997,785 | 670,504 | 90% | 5 | 0 (| 225,949 | 59,969 | 148 | 16 | 11 | 120 | 1,321 2 | 2,773 | 485 | 41 | 23.52 | 383,031 | | | 600 | 156 | 2,250 | 250 | 1,061,843 | 1,716,857 | 14,077 | 6,392 | 23,251 | 114,594 | 43,720 | 0.171 | 930,904 | 66,881 | 997,785 | 670,504 | 90% | 5 | 0 (| 225,949 | 59,969 | 148 | 16 | 11 | 120 | 1,321 2 | 2,773 | 485 | 41 | 23.52 | 383,031 | | | 600 | 156 | 2,250 | 250 | 1,057,005 | 1,716,569 | 13,857 | 6,392 | 23,775 | 114,575 | 44,024 | 0.171 | 930,904 | 66,881 | 997,785 | 670,504 | 90% | 5 | 0 (| 225,949 | 59,969 | 148 | 16 | 11 | 120 | 1,321 2 | 2,773 | 485 | 41 | 23.52 | 383,031 | | 2040 | 600 | 156 | 2,250 | 300 | 1,052,460 | 1,715,719 | 13,852 | 6,294 | 24,125 | 114,518 | 44,270 | 0.171 | 930,904 | 66,222 | 997,125 | 670,504 | 90% | | 0 1 | 225,211 | 58,714 | 145 | 16 | 11 | 118 | 1,293 2 | 2,296 | 460 | 39 | 23.52 | 383,322 | | 2042 | 600 | 156 | 2,250 | 250 | 1,041,600 | 1,697,168 | 13,431 | 6,392 | 23,935 | 113,280 | 43,757 | 0.169 | 930,904 | 66,881 | 997,785 | 670,504 | 90% | | 0 1 | 225,949 | 59,969 | 148 | 16 | 11 | 120 | 1,321 2 | 2,773 | 485 | 41 | 23.52 | 383,031 | | 2044 | 600 | 156 | 2,250 | 300 | 1,036,875 | 1,688,953 | 13,418 | 6,294 | 23,812 | 112,732 | 43,524 | 0.168 | 930,904 | 66,222 | 997,125 | 670,504 | 90% | | 0 1 | 225,211 | 58,714 | 145 | 16 | 11 | 118 | 1,293 2 | 2,296 | 460 | 39 | 23.52 | 383,322 | | 2046 | 600 | 156 | 2,250 | 300 | 1,032,330 | 1,687,317 | 13,210 | 6,294 | 24,214 | 112,623 | 43,718 | 0.168 | 930,904 | 66,222 | 997,125 | 670,504 | 90% | 5 | 0 (| 225,211 | 58,714 | 145 | 16 | 11 | 118 | 1,293 2 | 2,296 | 460 | 39 | 23.52 | 383,322 | | 2048 | 650 | 156 | 2,650 | 300 | 1,122,102 | 1,676,008 | 14,582 | 6,513 | 15,876 | 111,868 | 36,971 | 0.167 | 1,008,478 | 41,998 | 1,050,476 | 670,504 | 94% | 5 | 0 (| 277,152 | 37,870 | 93 | 10 | 7 | 76 | 834 1 | 4,381 | 311 | 27 | 27.7 | 387,795 | | 2050 | 650 | 156 | 2,650 | 300 | 1,117,067 | 1,671,209 | 14,353 | 6,513 | 16,121 | 111,548 | 36,987 | 0.166 | 1,008,478 | 41,998 | 1,050,476 | 670,504 | 94% | 5 | 0 (| 277,152 | 37,870 | 93 | 10 | 7 | 76 | 834 1 | 4,381 | 311 | 27 | 27.7 | 387,795 | | Sunshot | 650 | 156 | 2,650 | 300 | 796,287 | 1,203,939 | 9,292 | 6,513 | 11,404 | 80,359 | 27,209 | 0.12 | 1,008,478 | 41,998 | 1,050,476 | 670,504 | 94% | 5 | 0 (| 277,152 | 37,870 | 93 | 10 | 7 | 76 | 834 1 | 4,381 | 311 | 27 | 27.7 | 387,795 | | | | | | | | | | | Base Case | - San Antor | 110 Con | mercial (w | tnout Gen | set) | | | | | _ | | F | sions | | | ٦ . | | |---------|-------|-------------|-----------|--------------------|-----------|--------------|-----------|------------|--------------|-------------|---------|------------|------------|-------------|-----------|----------|-------|---------|-----|--------|--------|--------|--------|-------|----------|-----------| | | 1 | | | | | | | _ | 1 | | _ | | Total | 1 | | | | | - | _ | Emis | T | | _ | + | _ | | | | | | | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | | Flectrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | | | | Battery | Battery | | Year | r DV | 1kWh Lision | Converter | Total Capital Cost | Total NPC | | Cost | Cost | Cost | | COE | | Production | Load Served | | | Load | | CO2 | co | LIHC | PM | SO2 | NOv | Autonomy | | | Teal | kW | Quantity | kW | č | ć . | S/vr | | | S/yr | | | kWh/vr | kWh/vr | kWh/vr | | kWh/vr | | kWh/vr | | | | kg/yr | | | | kWh/vr | | 2014 | | | 300 | 2,477,135 | 3 047 806 | | | 2/41 | 322,944 | | | | | | | 649 | | | | NB/ yr | NB/ yi | KB/ YI | NE/ YI | NB/ Y | 36.5 | | | 2016 | | | 300 | | | | | - | 262,480 | | | | | | | 649 | 570 | | | 0 | | - | | 1 0 | 36.5 | | | 2018 | | | 300 | | | | | 1 0 | 226,847 | 51,492 | | 1,473,928 | 1,473,928 | | | 649 | 570 | | | 0 | 1 0 | 1 0 | 1 6 | | 36.5 | | | 2020 | | | 300 | | | 39.665 | | - | 195,807 | | | 1,473,928 | 1,473,928 | | | 649 | 570 | | | 0 | 0 | C | 1 | 0 0 | 36.5 | | | 2022 | | | 300 | | | | | 1 0 | 178,006 | | 0.266 | 1,473,928 | | | | 649 | 570 | | | 0 | 0 | e | 1 | 0 0 | 36.5 | | | 2024 | | | 300 | | | | | - | 162,690 | | 0.243 | 1,473,928 | | | | 649 | 570 | | | 0 | 0 | e | | 0 0 | 36.5 | | | 2026 | 950 | 3,500 | 300 | 1,742,295 | 2,268,453 | 28,119 | 7,000 | 0 | 151,412 | | 0.226 | 1,473,928 | | | 100% | 649 | 570 | | | 0 | 0 | 0 | | 0 0 | 36.5 | | | 2028 | 950 | 3,500 | 300 | 1,665,860 | 2.153.001 | 25.515 | 7.000 | 0 | 143,706 | 32,515 | 0.215 | 1,473,928 | 1.473.928 | 669,934 | 100% | 649 | 570 | 702,246 | 0 | 0 | 0 | e | (| 0 0 | 36.5 | 9 380.876 | | 2030 | | 3,500 | 300 | 1,591,380 | 2,048,102 | 23,485 | 7,000 | 0 | 136,704 | 30,485 | 0.204 | 1,473,928 | 1,473,928 | 669,934 | 100% | 649 | 570 | | | 0 | 0 | 0 | | 0 0 | 36.5 | 9 380,876 | | 2032 | 950 | 3,500 | 300 | 1,576,575 | 2,023,251 | 22,814 | 7,000 | 0 | 135,045 | 29,814 | 0.202 | 1,473,928 | 1,473,928 | 669,934 | 100% | 649 | 570 | 702,246 | 0 | 0 | 0 | 0 | | 0 0 | 36.5 | 9 380,876 | | 2034 | 950 | 3,500 | 300 | 1,556,365 | 1,995,770 | 22,329 | 7,000 | 0 | 133,211 | 29,329 | 0.199 | 1,473,928 | 1,473,928 | 669,934 | 100% | 649 | 570 | 702,246 | 0 | 0 | 0 | 0 | (| 0 0 | 36.5 | 9 380,876 | | 2036 | 950 | 3,500 | 300 | 1,538,255 | 1,971,825 | 21,939 | 7,000 | 0 | 131,613 | 28,939 | 0.196 | 1,473,928 | 1,473,928 | 669,934 | 100% | 649 | 570 | 702,246 | 0 | 0 | 0 | 0 | (| 0 0 | 36.5 | 9 380,876 | | 2038 | | | 300 | 1,530,730 | 1,959,170 | 21,597 | | 0 | 130,768 | | 0.195 | 1,473,928 | 1,473,928 | | | 649 | 570 | | | 0 | 0 | 0 | (| 0 0 | 36.5 | | | 2040 | | | 300 | 1,514,160 | | 21,277 | | 0 | 129,343 | | | 1,473,928 | 1,473,928 | | | 649 | 570 | | | 0 | 0 | 0 | (| 0 0 | 36.5 | | | 2042 | | | 300 | 1,506,600 | | 20,934 | | 0 | 128,495 | | | 1,473,928 | 1,473,928 | | | 649 | 570 | | | 0 | 0 | 0 | (| 0 0 | 36.5 | | | 2044 | 950 | | 300 | 1,489,750 | 1,903,287 | 20,602 | | 0 | 127,038 | | | 1,473,928 | 1,473,928 | | | 649 | 570 | | | 0 | 0 | 0 | | | 36.5 | | | 2046 | | | 300 | 1,482,680 | | | | 0 | 126,244 | | | | | | | 649 | 570 | | | 0 | 0 | 0 | (| 0 0 | 36.5 | | | 2048 | | | 300 | 1,466,285 | | | | 0 | 124,756 | | | 1,473,928 | | | | 649 | 570 | | | 0 | 0 | 0 | (| 0 0 | 36.5 | | | 2050 | 950 | | 300 | 1,459,635 | | | | 0 | 124,010 | | | | 1,473,928 | | | 649 | 570 | | | 0 | 0 | 0 | (| 0 0 | 36.5 | | | Sunshot | t 950 | 3,500 | 300 | 1,010,530 | 1,311,054 | 13,059 | 7,000 | 0 | 87,508 | 20,059 | 0.131 | 1,473,928 | 1,473,928 | 669,934 | 100% | 649 | 570 | 702,246 | 0 | 0 | 0 | 0 | 1 0 | 0 0 | 36.5 | 9 380,876 | | | | | | | | | | | Ac | celerated Te | chnology | Improven | nent - San A | ntonio Cor | nmercial (with | (Genset | | | | | | | | | | _ | | | | | |------------------------------|-----|---------------|-------------|-----------|---------------|-----------|------------------|-----------|------------|--------------|-----------|----------|--------------|------------|------------------|-------------|-----------|----------|--------|-------------|--------|----------|----------|-------|-----------|----------|--------|-----------|----------|------------| E | missions | 5 | | 7 | | | | | | | | | | | Total Capital | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | т | \neg | Genset | Genset | Genset | Battery | Battery | | Battery Projection Study | PV | Diesel Genset | 1kWh Li-ion | Converter | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | COE | Production | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | CO2 | CO UF | IC PM | sc | 2 NOx | Fuel | Hours | Starts | Autonomy | Throughput | | | kW | kW | Quantity | kW | \$ | s | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr kg | /yr kg/ | yr kg | /yr kg/yr | L/yr | hr/yr | starts/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 750 | 156 | 1,850 | 250 | 1,105,562 | 1,732,076 | 20,401 | 5,361 | 16,055 | 115,610 | 41,818 | 0.172 | 1,163,626 | 59,719 | 1,223,345 | 670,504 | 0.91 | | 0 | 453,989 | 53,315 | 132 | 15 | 10 | 107 1,17 | 4 20,246 | 426 | 39 | 19.34 | 371,59 | | Deutsche Bank | 750 | 156 | 1,850 | 250 | 947,609 | 1,465,299 | 13,175 | 5,361 | 16,018 | 97,804 | 34,554 | 0.146 | 1,163,626 | 59,531 | 1,223,157 | 670,504 | 0.91 | | 0 | 453,792 | 53,191 | 131 | 15 | 10 | 107 1,17 | 2 20,199 | 426 | 39 | 19.34 | 371,63 | |
McKinsey | 750 | 156 | 1,850 | 250 | 891,684 | 1,371,025 | 10,615 | 5,361 | 16,018 | 91,511 | 31,994 | 0.136 | 1,163,626 | 59,531 | 1,223,157 | 670,504 | 0.91 | | 0 | 453,792 | 53,191 | 131 | 15 | 10 | 107 1,17 | 2 20,199 | 426 | 39 | 19.34 | 371,63 | | Department of Energy | 650 | 156 | 2,650 | 300 | 796,261 | 1,203,913 | 9,292 | 6,513 | 11,404 | 80,357 | 27,209 | 0.12 | 1,008,478 | 41,998 | 1,050,476 | 670,504 | 0.94 | | 0 | 277,152 | 37,870 | 93 | 10 | 7 | 76 83 | 4 14,381 | 311 | 27 | 27.7 | 387,79 | | Battery OEM | 650 | 156 | 2,650 | 300 | 756,246 | 1,136,696 | 7,477 | 6,513 | 11,404 | 75,871 | 25,394 | 0.113 | 1,008,478 | 41,998 | 1,050,476 | 670,504 | 0.94 | | 0 | 277,152 | 37,870 | 93 | 10 | 7 | 76 83 | 4 14,381 | 311 | 27 | 27.7 | 387,79 | | | | | | | | | | | | | Dow | and cide In | an rouge mon | t Can Ant | onio Comm | ercial (with Ge | ancot) | | | | | | | | | | | | | | | |---------|-----|---------------|-------------|-----------|--------------------|--------------------|-----------|----------------------------------|-------------------|------------------|----------------------|-------------------|--------------|------------------|------------|--------------------------------|---------------------------|-----------------------|----------------------|---------------|---------|--------|-------|----------|----------|---------|--------------------|-------|------------------|--------------------|-----------------------| | | | | | | | | | | | | Dell | iaiiu-siue iii | iprovenien | t - Jan Anti | onio Comin | ercial (with de | enset) | | | | | | | Emission | ns | | 7 | | | | | | Yea | PV | Diesel Genset | 1kWh Li-ion | Converter | Efficiency
Case | Total Capital Cost | Total NPC | Total Annual
Replacement Cost | Total O&M
Cost | | Total
Annual Cost | Operating
Cost | COE | PV
Production | | Total Electrical
Production | AC Primary
Load Served | Renewable
Fraction | Capacity
Shortage | Unmet
Load | | CO2 | со | UHC PI | и SO2 | NOx | Genset
Fuel | | Genset
Starts | | Battery
Throughput | | | kW | kW | Quantity | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | | kWh/yr | kWh/yr | | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr kg | /yr kg/y | r kg/yr | L/yr | hr/yr | starts/yr | hr | kWh/yr | | 2014 | 350 | 156 | 1,250 | 150 | Yes | 992,154 | 1,508,804 | 26,532 | | 23,598 | 159,872 | 54,744 | 0.361 | 543,025 | 76,445 | 619,470 | 442,53 | 83% | 5 | 0 | 109,187 | 68,139 | 168 | 19 | 13 1 | 1,50 | 25,87 | 542 | 71 | 5 13.07 | 253,499 | | 2016 | | 156 | | | Yes | 872,037 | 1,338,603 | | | 18,239 | 132,980 | | | | 71,448 | 614,473 | | | 5 | 0 | 104,079 | 63,699 | 157 | 17 | 12 1 | 8 1,40 | 24,18 | 507 | 6 | 13.59 | 253,909 | | 2018 | 350 | 156 | 1,300 | | Yes . | 1,013,921 | 1,668,448 | | | 18,336 | 117,197 | | | | 71,448 | 614,473 | | | | 0 | 104,079 | 63,699 | 157 | 17 | 12 1 | | 24,18 | | 6 | 13.59 | | | 2020 | | 156 | | | Yes | 976,342 | | | | 15,744 | 105,837 | | 0.239 | | 57,502 | 678,104 | | | | 0 | 168,342 | | | 14 | 10 1 | | 19,85 | | 5! | 9 13.07 | 251,920 | | 2022 | | 156 | | | Yes | 903,642 | | | | 15,797 | 99,580 | | | | 55,961 | 676,562 | | | | 0 | 166,686 | 50,118 | | 14 | | | 19,03 | | 5 | 7 13.07 | 252,344 | | 2024 | | 156 | | | Yes | 836,179 | 1,410,663 | | | 16,349 | 94,157 | | 0.213 | | 55,961 | 676,562 | | | | 0 | 166,686 | 50,118 | | 14 | 9 1 | | 19,03 | | 5 | 7 13.07 | 252,344 | | 2026 | | 156 | | | Yes | 790,604 | | | 4,076 | 16,814 | 90,345 | | 0.204 | | 55,742 | 676,344 | | | | 0 | 166,459 | 49,974 | | 14 | | | 18,97 | | 5 | 7 13.07 | 252,378 | | 2028 | | 156 | | | Yes | 762,092 | | | | 17,289 | 87,967 | | 0.199 | | 55,742 | 676,344 | | | | 0 | 166,459 | 49,974 | | 14 | 9 1 | | 18,97 | | 5 | 7 13.07 | 252,378 | | 2030 | | 156 | | | Yes | 796,126 | | | | 13,835 | 85,583 | | 0.193 | | 44,011 | 742,187 | | | | 0 | 233,102 | | | 11 | 7 : | | 14,79 | | 41 | 13.59 | 250,778 | | 2032 | | 156 | | | Yes | 790,627 | 1,278,736 | | | 14,220 | 85,351 | | 0.193 | | | 742,187 | | | | 0 | 233,102 | 38,964 | | 11 | 7 | | 14,79 | | 41 | 13.59 | 250,778 | | 2034 | | 156 | | | Yes | 782,149 | 1,275,760 | | | 14,767 | 85,153 | | 0.192 | | 44,011 | 742,187 | | | | 0 | 233,102 | | | 11 | 7 : | 8 85 | 14,79 | | 41 | 13.59 | | | 2036 | | 156 | | | Yes | 774,451 | 1,270,993 | | | 15,107 | 84,835 | | 0.192 | | 44,011 | 742,187 | | | | 0 | 233,102 | 38,964 | | 11 | 7 | 8 85 | 14,79 | | 41 | 13.59 | 250,778 | | 2038 | | 156 | | | Yes | 771,656 | 1,271,392 | | | 15,448 | 84,861 | | 0.192 | | 44,011 | 742,187 | | | | 0 | 233,102 | 38,964 | | 11 | 7 | | 14,79 | | 41 | 13.59 | 250,778 | | 2040 | | 156 | | | Yes | 764,530 | 1,270,912 | | | 16,010 | 84,829 | | 0.192 | | 44,011 | 742,187 | | | | 0 | 233,102 | 38,964 | | 11 | 7 | | 14,79 | | 41 | 13.59 | | | 2042 | | 156 | | | Yes | 761,722 | | | | 15,551 | 84,055 | | 0.19 | | 44,011 | 742,187 | | | | 0 | 233,102 | | | 11 | 4 | | 14,79 | | 41 | 13.59 | | | 2044 | | 156
156 | | | Yes
Yes | 754,492
751.866 | 1,254,013 | | | 15,803
16.066 | 83,701
83,676 | | 0.189 | | 44,011 | 742,187
742.124 | | | | 0 | 233,102 | 38,964 | | 11 | 7 | | 3 14,79
3 14,79 | | 41 | 13.59 | 250,778 | | 2048 | | | | | Yes | | | | | 10,862 | | | | | | | | | | 0 | | | | 11 | 4 | 8 85 | | | 41 | | | | 2048 | 450 | 156
156 | | | Yes | 791,009
787,779 | 1,246,386 | | | 10,862 | 83,192
82,997 | | 0.188 | | 28,623 | 726,800
726,800 | | | | 1 0 | 216,374 | | | 7 | 5 . | 2 57 | 9,83 | | 2 | 5 17.77
5 17.77 | | | Sunshot | | 156 | | | Yes | 571.128 | | | | 7.802 | 62.050 | | | | 28,623 | 726,800 | | | | 1 0 | 216,374 | 25,909 | | -/- | 3 3 | 5/ | 9,83 | | - 2 | 5 17.77 | | | Sunsno | 450 | 156 | 1,700 | 200 | yes | 5/1,128 | 929,636 | 11,888 | 4,239 | 7,802 | 62,050 | 23,929 | 0.14 | 698,176 | 28,623 | 726,800 | 442,53. | 949 | | ų v | 216,374 | 25,909 | 64 | - / | 5 : | 5/ | 9,83 | 215 | | 17.// | 255,745 | | | | | | | | | | | | | | Combin | ed Improv | ement - Sa | in Antonio (| commercial (wi | th Genset) | | | | | | | | | | | | | | | | |------------------------------|---------------|---------------|-------------|-----------|-----------------|---------------|-----------|------------------|-----------|------------|--------------|-----------|-----------|------------|--------------|------------------|------------|-----------|----------|------------|-------------|---------------|-------|---------------|---------------|-------|---------------|------------|----------|-----------|----------|-----------| $\overline{}$ | | Em | issions | | | 7 | | | | | | | $\overline{}$ | | | | | Total Capital | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | | Excess | | | $\overline{}$ | $\overline{}$ | | $\overline{}$ | | Genset | Gerset | Battery | Battery | | Battery Projection Study | PV | Diesel Genset | 1kWh Li-ion | Converter | Efficiency Case | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | | COE | | Production | Production | | Fraction | Shortage | Unmet Load | Electricity | CO2 | co | UHC | PM | 502 | NOx | Genset Fue | fl Hours | Starts | Autonomy | Throughpu | | | kW | kW | Quantity | kW | | \$ | \$ | S/yr | S/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | L/yr | hr/yr | starts/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 500 | 156 | 1,25 | 0 20 | 0 Yes | | 1,279,179 | | 3,569 | 10,363 | 85,381 | 33,566 | 0.193 | 775,75 | 38,642 | 814,39 | 442,53 | 0.9 | | | 305,661 | 34,411 | 85 | 5 | 9 | 6 6 | 9 79 | 8 13,06 | i8 27 | 3 | 38 13.00 | 7 248,72 | | Deutsche Bank | 450 | 156 | 1,30 | 0 20 | 0 Yes | 639,12 | 1,099,883 | 15,235 | 3,786 | 11,734 | 73,413 | 30,754 | 0.166 | 698,17 | 6 44,011 | 742,18 | 442,53 | 0.9 | | | 233,102 | 38,964 | 98 | 6 1 | 1 | 7 7 | 8 89 | 8 14,79 | 7 30 | 4 | 40 13.55 | 9 250,77 | | McKinsey | 450 | 156 | 1,30 | 0 20 | 0 Yes | 599,82 | 1,033,894 | 13,453 | 3,786 | 11,734 | 69,009 | 28,973 | 0.156 | | | | | | | | 233,102 | 38,964 | 98 | 5 1 | 1 | 7 7 | 8 89 | 8 14,79 | 7 30 | 4 | 40 13.5 | 9 250,77 | | Department of Energy | 450 | 156 | 1,70 | 0 20 | 0 Yes | 571,11 | | 11,888 | 4,239 | 7,802 | 62,049 | 23,929 | 0.14 | 698,17 | 5 28,623 | | | | | | 216,374 | 25,909 | 64 | 4 | 7 | 5 5 | 2 57 | 1 9,83 | 9 21 | 5 | 25 17.7 | 7 255,74 | | Battery OEM | 450 | 156 | 1,90 | 0 20 | 0 Yes | 557,53 | 885,727 | 11,130 | 4,451 | 6,325 | 59,119 | 21,906 | 0.134 | 698,17 | 6 23,565 | 721,74 | 442,53 | 0.95 | | | 211,097 | 21,002 | 52 | 2 | 6 | 4 4 | 2 46 | 3 7,97 | 6 16 | 7 | 17 19.8 | 6 256,55 | ## COMMERCIAL TABLES - LOS ANGELES, CA | _ |---------|-----|---------------|-------------|-----------|--------------------|-----------|------------------|-----------|------------|--------------|-----------|---------|------------|------------|------------------|-------------|-----------|----------|--------|-------------|--------|----------|---------|---------|---------|--------|--------|----------|----------|------------| | | | | | | | | | | | | Ba | se Case | - Los Ange | les Comme | rcial (with Ge | nset) | mission | s | | | | | | | | | | | | | | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | | | Genset | Genset | Genset | Battery | Battery | | Year | PV | Diesel Genset | 1kWh Li-ion | Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | COE | Production | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | CO2 | co u | IC PM | SO2 | NOx | Fuel | Hours | Starts | Autonomy | Throughput | | | kW | kW | Quantity | kW | \$ | \$ | \$/yr | \$/yr | \$/yr
| \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr kg | /yr kg/ | yr kg/y | r kg/yr | L/yr | hr/yr | starts/y | hr | kWh/yr | | 2014 | 400 | 115 | 1,650 | 200 | 1,163,357 | 1,803,469 | 27,153 | 6,279 | 34,394 | 191,095 | 67,826 | 0.326 | 642,870 | 112,728 | 755,598 | 586,557 | 81% | | 0 (| 82,282 | 99,310 | 245 | 27 | 18 19 | 9 2,18 | 37,713 | 1,036 | 83 | 19.72 | 325,202 | | 2016 | 400 | 115 | 1,650 | | 999,848 | 1,582,078 | 23,309 | 6,270 | 28,261 | 157,167 | 57,840 | 0.268 | 642,870 | 111,912 | 754,782 | 586,557 | 81% | | 0 (| 81,264 | 98,700 | 244 | 27 | 18 19 | 8 2,17 | 37,481 | 1,033 | 81 | 19.72 | 325,948 | | 2018 | | 115 | 1,600 | 200 | 1,234,228 | | | 5,767 | | 139,775 | | 0.238 | | 96,522 | 819,749 | 586,557 | 84% | | 0 (| 146,251 | | 210 | 23 | 16 17 | | | 893 | | 19.12 | 325,984 | | 2020 | | 115 | 1,650 | 200 | 1,123,324 | | | 5,879 | 24,892 | 126,073 | | 0.215 | | 92,551 | 815,778 | 586,557 | 84% | | 0 0 | | 82,660 | 204 | 23 | 15 16 | 6 1,82 | 31,390 | | | 19.72 | 327,830 | | 2022 | 450 | 115 | 1,650 | 200 | 1,026,660 | 1,778,922 | 18,276 | 5,893 | 26,042 | 118,737 | 50,211 | 0.202 | 723,228 | 92,309 | 815,537 | 586,557 | 84% | | 0 1 | 141,471 | 82,622 | 204 | 23 | 15 16 | 6 1,82 | 31,375 | 902 | 69 | 19.72 | 328,122 | | 2024 | | 115 | 1,700 | | 1,016,111 | 1,679,991 | | 5,571 | 22,478 | 112,134 | | 0.191 | 803,588 | 76,887 | 880,475 | 586,557 | 87% | | 8 (| 206,132 | 68,908 | 170 | 19 | 13 13 | 8 1,51 | 26,168 | 755 | 56 | 20.32 | 329,238 | | 2026 | | 115 | 1,700 | | 956,329 | | | 5,571 | 23,184 | 107,219 | | 0.183 | 803,588 | 76,887 | 880,475 | 586,557 | 87% | | 8 (| 206,132 | | 170 | 19 | 13 13 | | | | 56 | 20.32 | 329,238 | | 2028 | | 115 | 1,700 | | 918,432 | | | 5,571 | 23,839 | 104,078 | | 0.177 | | 76,887 | 880,475 | 586,557 | 87% | | 8 (| 206,132 | | 170 | 19 | 13 13 | | | | 56 | 20.32 | 329,238 | | 2030 | | 115 | 1,850 | 200 | 957,708 | | | 5,428 | | | | 0.172 | | 59,267 | 943,212 | | 90% | | 2 (| 268,415 | | 132 | 15 | 10 10 | 1,18 | | | 44 | 22.11 | 332,879 | | 2032 | 550 | 115 | 1,900 | 250 | 962,555 | 1,507,826 | 12,740 | 5,364 | 18,291 | 100,642 | 36,395 | 0.172 | 883,945 | 56,112 | 940,057 | 586,557 | 90% | | 0 (| 264,718 | 50,120 | 124 | 14 | 9 10 | 1,10 | 19,033 | 544 | 41 | 22.71 | 335,055 | | 2034 | | 115 | 1,900 | 250 | 951,241 | | | 5,364 | | 100,328 | | 0.171 | 883,945 | 56,112 | 940,057 | 586,557 | 90% | | 0 (| 264,718 | | 124 | 14 | 9 10 | | | | 41 | 22.71 | 335,055 | | 2036 | | 115 | 1,900 | | 941,067 | | | 5,364 | | 99,875 | 37,062 | 0.17 | 883,945 | 56,112 | 940,057 | | 90% | | 0 (| 264,718 | | 124 | 14 | 9 10 | | | | | 22.71 | 335,055 | | 2038 | | 115 | 1,900 | | 936,982 | | | 5,364 | | 99,854 | 37,314 | 0.17 | 883,945 | 56,112 | 940,057 | 586,557 | 90% | | 0 (| 264,718 | | 124 | 14 | 9 10 | | | | 41 | 22.71 | 335,055 | | 2040 | | 115 | 1,900 | 250 | 927,644 | | | 5,364 | 20,594 | | 37,864 | 0.17 | 883,945 | 56,112 | 940,057 | 586,557 | 90% | | 0 0 | 264,718 | | 124 | 14 | 9 10 | | | | 41 | 22.71 | 335,055 | | 2042 | | 115 | 1,900 | 250 | 923,540 | | | 5,364 | | 98,731 | 37,087 | 0.168 | | 56,112 | 940,057 | 586,557 | 90% | | 0 0 | 264,718 | | 124 | 14 | 9 10 | | | | | 22.71 | 335,055 | | 2044 | | 115 | 1,900 | 250 | 914,050 | | | 5,364 | 20,327 | 98,240 | | 0.167 | 883,945 | 56,112 | 940,057 | 586,557 | 90% | | 0 0 | 264,718 | | 124 | 14 | 9 10 | | | | 41 | 22.71 | 335,055 | | 2046 | | 115 | 2,150 | 250 | 939,582 | | | 5,625 | | 98,090 | | 0.167 | 883,945 | 46,518 | 930,463 | 586,557 | 92% | | 0 0 | 254,085 | | 103 | 11 | 8 8 | 14 92: | | | 33 | 25.69 | | | 2048 | | 115 | 2,150 | 250 | 929,847 | | | 5,625 | 17,521 | | | 0.166 | 883,945 | 46,518 | 930,463 | 586,557 | 92% | | 0 (| 254,085 | | 103 | 11 | 8 8 | 14 92: | | | | 25.69 | | | 2050 | | 115 | 2,100 | 250 | 974,081 | 1,457,265 | | 5,339 | | 97,267 | 32,251 | 0.166 | 964,304 | 39,813 | 1,004,117 | 586,557 | 93% | | 0 (| 327,915 | | 88 | 10 | 7 7 | 2 78 | | 396 | 30 | 25.1 | | | Sunshot | 600 | 115 | 2,100 | 250 | 692,218 | 1,048,201 | 7,640 | 5,339 | 10,782 | 69,964 | 23,761 | 0.119 | 964,304 | 39,813 | 1,004,117 | 586,557 | 93% | | 0 1 | 327,915 | 35,804 | 88 | 10 | 7 7 | 2 78 | 13,597 | 396 | 30 | 25.1 | 338,577 | | | | | | | | | | | Base Case | - Los Angel | es Con | mercial (w | ithout Gens | set) | | | | | _ | | | | | | | | |---------|-----|-------|-----|--------------------|-----------|------------------|-------|-------|--------------|-------------|--------|------------|-------------|-------------|----------|----------|-------|-------------|-----|-------|-------|--------|-------|------|----------|-----------| _ | | Emis | ssions | | | | | | | | | | | | | | | | | | | Total | | | | | | 1 | | | | | | | 1 | | | | | | | | Total Annual | | | Total Annual | Operating | | PV | Electrical | | | | Unmet | Excess | 1 | | | | | | Battery | Battery | | Year | _ | | | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | | | | Production | Load Served | Fraction | Shortage | | Electricity | | CO | UHC | | | | Autonomy | | | | kW | | kW | \$ | \$ | \$/yr | | \$/yr | \$/yr | | | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | | kWh/yr | | kg/yr | kg/yr | kg/yr | kg/yr | kg/y | | kWh/yr | | 2014 | | | 300 | | 3,017,408 | | | 0 | 319,723 | | | | | | 100% | | 465 | 528,526 | |) (| (|) C |) (|) (| 49 | | | 2016 | | | 300 | | 2,605,047 | 52,700 | | 0 | 258,791 | 60,900 | 0.442 | | | | 100% | 581 | 465 | 528,526 | |) (| 0 | 0 د |) (| 0 | 49 | | | 2018 | | | 300 | | 3,195,458 | | | | 224,459 | 59,928 | | | | | 100% | 581 | 465 | 528,526 | |) (| 0 |) (|) (|) (| 49 | | | 2020 | | | 300 | | 2,903,892 | 46,098 | | 0 | 193,825 | 54,298 | | 1,205,378 | | | 100% | 581 | 465 | 528,526 | |) (| 0 |) (|) (| 0 | 49 | | | 2022 | | | 300 | | 2,632,830 | | | 0 | 175,732 | | | 1,205,378 | | 586,092 | 100% | 581 | 465 | 528,526 | |) (| |) (|) (|) (| 49 | 9 341,155 | | 2024 | | | 300 | | 2,397,625 | 36,528 | | 0 | 160,033 | 44,728 | | | | | 100% | 581 | 465 | 528,526 | |) (| 1 |) (|) (| 0 | 49 | | | 2026 | | | 300 | | 2,218,039 | 32,644 | | 0 | 148,047 | 40,844 | | 1,205,378 | 1,205,378 | 586,092 | 100% | 581 | 465 | 528,526 | 5 0 |) (| (|) (|) (|) (| 49 | 9 341,155 | | 2028 | | | 300 | | 2,090,052 | 29,593 | | 0 | 139,504 | 37,793 | | 1,205,378 | | | 100% | 581 | 465 | 528,526 | |) (| |) (|) (|) (| 49 | | | 2030 | | | 300 | | 1,978,782 | | | 0 | 132,077 | 35,429 | | | | | 100% | 581 | 465 | 528,526 | |) (| (|) (|) (|) (| 49 | 9 341,155 | | 2032 | 750 | 4,100 | 300 | | 1,949,671 | 26,443 | | 0 | 130,134 | 34,643 | | 1,205,378 | 1,205,378 | 586,092 | 100% | 581 | 465 | 528,526 | 5 0 |) (| |) (|) (|) (| 49 | 9 341,155 | | 2034 | | | 300 | | 1,921,107 | 25,875 | | 0 | 128,227 | 34,075 | | 1,205,378 | | 586,092 | 100% | 581 | 465 | 528,526 | |) (| (|) (|) (|) (| 49 | | | 2036 | | | 300 | | 1,896,686 | | | 0 | 126,597 | 33,618 | 0.216 | 1,205,378 | | | 100% | 581 | 465 | 528,526 | |) (| (|) (|) (|) (| 49 | | | 2038 | | | 300 | | 1,881,861 | | | 0 | 125,608 | | 0.214 | 1,205,378 | | | 100% | 581 | 465 | 528,526 | |) (| (|) (|) (|) (| 49 | | | 2040 | 750 | 4,100 | 300 | | 1,860,473 | 24,643 | 8,200 | 0 | 124,180 | 32,843 | 0.212 | 1,205,378 | 1,205,378 | 586,092 | 100% | 581 | 465 | 528,526 | 5 0 |) (| (|) (|) (|) (| 49 | 9 341,155 | | 2042 | | | 300 | | 1,845,590 | 24,241 | | 0 | 123,187 | 32,441 | | | | 586,092 | 100% | 581 | 465 | 528,526 | | 0 | |) (| 0 | | 49 | | | 2044 | | | 300 | | 1,823,656 | | | 0 | 121,723 | 32,052 | | 1,205,378 | | | 100% | 581 | 465 | 528,526 | |) (| (|) (|) (| 0 | 49 | | | 2046 | 750 | 4,100 | 300 | 1,335,168 | 1,809,717 | 23,475 | | 0 | 120,793 | 31,675 | 0.206 | 1,205,378 | 1,205,378 | 586,092 | 100% | 581 | 465 | 528,526 | 5 0 | 0 0 | |) (| 0 0 | 0 0 | 49 | 9 341,155 | | 2048 | 750 | 4,100 | 300 | 1,319,591 | 1,787,454 | 23,028 | 8,200 | 0 | 119,307 | 31,228 | 0.204 | 1,205,378 | 1,205,378 | 586,092 | 100% | 581 | 465 | 528,526 | 5 0 | 0 | |) (| 0 | 0 | 49 | 9 341,155 | | 2050 | 750 | 4,100 | 300 | | 1,774,361 | 22,674 | 8,200 | 0 | 118,433 | 30,874 | 0.202 | 1,205,378 | 1,205,378 | 586,092 | 100% | 581 | 465 | 528,526 | 5 0 | 0 0 | (|) (|) (|) (| 49 | 9 341,155 | | Sunshot | 750 | 4,100 | 300 | 903,878 | 1,253,179 | 15,114 | 8,200 | 0 | 83,645 | 23,314 | 0.143 | 1,205,378 | 1,205,378 | 586,092 | 100% | 581 | 465 | 528,526 | 5 0 | 0 0 | |) (| 0 | 0 | 49 | 9 341,155 | | | | | | | | | | | | | Base Cas | e - Los Ang | geles Fixed (| ost of Capi | tal (9.5%) witl | h Genset | | | | | | | | | | | | | | | |---------|-----|-----|----------|-----------|--------------------|-----------|------------------|-------|--------|--------------|----------|-------------|---------------|-------------|------------------|-------------|----------|-----|--------|---------|---------|-----|-----------|---------|---------|--------|-----|-----------|-------|------------| Emissions | | | 1 | 1 | | | | | | | | | | Total Annual | | | Total Annual | | | PV | Genset | Total Electrical | | | | Unmet | | | | | | | | | | | Battery | | Year | | | | Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | COE | Production | | | Load Served | Fraction | | | | | | UHC PM | | NOx | | | | | Throughput | | | kW | | Quantity | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | | | kWh/yr | | | kWh/yr | | kg/yr i | | | r kg/yr | | | | starts/yr | | kWh/yr | | 2014 | | 115 | 1,650 | 200 | | | | | | | | | | 112,728 | | | 81% | | | 82,282 | 99,310 | 245 | | 18 19 | | | | | 19.72 | | | 2016 | 400 | 115 | 1,650 | 200 | | | | 6,270 | | 163,015 | | 0.278 | | 111,912 | 754,782 | | 81% | | - | 81,264 | 98,700 | 244 | | 18 19 | | 37,481 | | | | | | 2018 | 400
| 115 | 1,500 | 200 | | | | 6,232 | | | | 0.304 | | 120,958 | 763,828 | | 79% | | | 90,398 | | 264 | | 20 21 | | | | 101 | | | | 2020 | 400 | 115 | 1,650 | 200 | | | | | | 164,961 | 53,510 | 0.281 | | 108,950 | 751,820 | | 81% | | | 77,855 | 97,211 | 240 | | 18 19 | | | | 82 | 19.72 | | | 2022 | | 115 | 1,650 | 200 | | 1,462,964 | | | | 155,015 | | | | 108,611 | 751,481 | 586,557 | 81% | | | | 97,327 | | | | | 36,960 | | 83 | | | | 2024 | | 115 | 1,650 | 200 | | 1,381,074 | | | | | | | | 108,565 | 751,435 | 586,557 | 81% | | | | 97,321 | | | | 5 2,14 | | | 83 | | | | 2026 | 400 | 115 | 1,650 | 200 | | | | 6,368 | | | | 0.239 | | 108,565 | 751,435 | | 81% | | - | 77,337 | | 240 | | | 5 2,14 | | | 83 | 19.72 | | | 2028 | | 115 | 1,650 | 200 | | 1,287,607 | | | | | | 0.233 | | 108,565 | 751,435 | 586,557 | 81% | | - | | 97,321 | | | | 5 2,14 | | | 83 | | | | 2030 | | 115 | 1,650 | 200 | | 1,251,667 | | 5,890 | | | | 0.226 | | 92,263 | 815,491 | 586,557 | 84% | | | 141,410 | | 204 | | 15 16 | | | | | 19.72 | | | 2032 | | 115 | 1,650 | 200 | | 1,249,827 | | | | | | 0.226 | | 92,263 | 815,491 | 586,557 | 84% | | | 141,410 | | 204 | | 15 16 | 6 1,820 | | | | 19.72 | | | 2034 | | 115 | 1,650 | 200 | | 1,249,38 | | 5,896 | | | | | | 92,263 | | 586,557 | 84% | | | 141,410 | | 204 | | 15 16 | | | | | | | | 2036 | | 115 | 1,650 | 200 | | 1,246,146 | | | | | 48,112 | 0.225 | | 92,263 | 815,491 | 586,557 | 84% | | | 141,410 | | 204 | | 15 16 | 6 1,820 | | | | 19.72 | | | 2038 | | 115 | 1,650 | 200 | | 1,248,10 | | | | | | 0.225 | | 92,263 | | | 84% | | | 141,410 | | 204 | | 15 16 | 6 1,820 | | | | 19.72 | | | 2040 | | 115 | 1,650 | 200 | | 1,250,30 | | 5,890 | | | | | | 92,263 | | 586,557 | | | | 141,410 | 82,616 | 204 | | 15 16 | 6 1,820 | | | | | | | 2042 | | | 1,650 | 200 | | 1,236,248 | | | | 130,992 | 48,647 | 0.223 | | 92,263 | 815,491 | 586,557 | 84% | | | 141,410 | | 204 | | 15 16 | 6 1,820 | | | 69 | 19.72 | | | 2044 | | 115 | 1,800 | 200 | | 1,231,967 | | | | | | 0.223 | | 85,409 | | | 85% | | 1 9 | 133,520 | | 189 | | 14 15 | 4 1,68 | | | 60 | 21.51 | | | 2046 | | 115 | 1,800 | 200 | | 1,231,92 | | | | | | 0.223 | | 85,409 | 808,636 | 586,557 | 85% | | 1 9 | 133,520 | 76,480 | 189 | | 14 15 | 4 1,68 | | | 60 | 21.51 | | | 2048 | | 115 | 1,800 | 200 | | | | | | 130,020 | | 0.222 | | 85,409 | | 586,557 | 85% | | 1 9 | 133,520 | | 189 | | 14 15 | 4 1,68 | | | 60 | 21.51 | | | 2050 | 450 | 115 | 1,800 | 200 | | | | | | 130,018 | | | | 85,409 | | | 85% | | - | 133,520 | | 189 | | 14 15 | | | | 60 | 21.51 | | | Sunshot | 500 | 115 | 2,050 | 200 | 608,439 | 885,409 | 6,711 | 5,888 | 16,749 | 93,817 | 29,348 | 0.16 | 803,588 | 61,594 | 865,181 | 586,557 | 89% | - 0 | 1 0 | 188,937 | 55,618 | 137 | 15 | 10 11 | 2 1,22 | 21,121 | 622 | 44! | 24.5 | 338,697 | | | | | | | | | | | A | ccelerated T | echnology | Improven | nent - Los A | ingeles Cor | nmercial (with | Genset) | | | | | | | | | | | | | | | |------------------------------|-----|---------------|-------------|-----------|---------------|-----------|------------------|-----------|------------|--------------|-----------|----------|--------------|-------------|------------------|-------------|-----------|----------|--------|-------------|--------|-------|--------|-------|----------|-----------|----------|-----------|----------|---------| | | | | | | | | | | | | - | | | - | - | - | | | | | | | Emissi | ions | | \neg | | | | | | | | | | | Total Capital | | Total Annual | Total 0&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | | | Gense | t Genset | Genset | Battery | Battery | | Battery Projection Study | PV | Diesel Genset | 1kWh Li-ion | Converter | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | COE | | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | CO2 | co | UHC | PM | SO2 NO | x Fuel | Hours | Starts | Autonomy | | | | kW | kW | Quantity | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr kg | fyr L/yr | hr/yr | starts/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 600 | 115 | 1,650 | 250 | 923,758 | 1,516,999 | 18,532 | 4,959 | 16,106 | 101,255 | 39,597 | 0.173 | 964,304 | 60,007 | 1,024,311 | 586,557 | 0.9 | 0 | 0 | 350,923 | 53,483 | 132 | 15 | 10 | 107 1 | 178 20,31 | 0 57 | 7 45 | 5 19.72 | 326,966 | | Deutsche Bank | 600 | 115 | 1,650 | 200 | 778,881 | 1,278,891 | 12,022 | 5,028 | 16,324 | 85,362 | 33,374 | 0.146 | | | | | 0.9 | 0 | 0 | 351,267 | 54,207 | 134 | 15 | 10 | 109 1 | 194 20,58 | 5 60 | 1 45 | 19.72 | 326,494 | | McKinsey | 600 | 115 | 1,750 | 250 | 745,093 | 1,195,064 | 10,324 | 5,015 | 14,695 | 79,766 | 30,034 | 0.136 | 964,304 | 54,731 | 1,019,035 | 586,557 | 0.91 | 1 | 0 | 344,837 | 48,799 | 120 | 13 | 9 | 98 1 | 075 18,53 | 1 52 | 7 41 | 20.91 | 330,468 | | Department of Energy | 600 | 115 | 2,100 | 250 | 692,197 | 1,048,179 | 7,640 | 5,339 | 10,782 | 69,962 | 23,761 | 0.119 | 964,304 | 39,813 | 1,004,117 | 586,557 | 0.93 | 0 | 0 | 327,915 | 35,804 | 88 | 10 | 7 | 72 | 789 13,59 | 7 39 | 6 30 | 25.1 | 338,577 | | Battery OEM | 600 | 115 | 2,100 | 250 | 660,487 | 994,913 | 6,201 | 5,339 | 10,782 | 66,407 | 22,322 | 0.113 | 964,304 | 39,813 | 1,004,117 | 586,557 | 0.93 | 0 | 0 | 327,915 | 35,804 | 88 | 10 | 7 | 72 | 789 13,59 | 7 39 | 6 30 | 25.1 | 338,577 | Den | nand-side Ir | nprovemen | t - Los Ange | eles Commi | ercial (with Ge | enset) | | | | | | | | | | _ | | | | | |--------|-----|---------------|----------|-----------|------------|--------------------|-----------|------------------|-----------|--------|-------------|--------------|-----------|--------------|------------|--------------------|---------|-----------|----------|----------|------------|--------|-------|----------|----|---------|-----------|-------|-----------|----------|---------| Emission | 15 | | 1 | | | | | | | | | | | | | | | L | | | | | | | | | | l | I. I. | | | | | | | | | | | L | | | | | | | Efficiency | L I | | Total Annual | Total 0&M | | | Operating | l | PV | Genset | Total Electrical | | Renewable | | Unmet 8 | | | | | | | | | Genset | Battery | Battery | | Yea | PV | Diesel Genset | | Converter | Case | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Annual Cost | Cost | | Production | Production | Production | | Fraction | Shortage | | lectricity | | | UHC PI | | | | Hours | Starts | Autonomy | | | | kW | kW | Quantity | kW | | \$ 838 398 | \$ | \$/yr | \$/уг | | \$/yr | \$/yr | | kWh/yr | | kWh/yr | kWh/yr | | kWh/yr | kWh/yr i | | | kg/yr | kg/yr kg | | r kg/yr | | hr/yr | starts/yr | hr | kWh/yr | | 201 | | 115 | | 150 | | 838,398
726.165 | 1,295,128 | 24,131 | | | | 48,395 | | | 67,315 | 549,467
549.521 | | 839 | | 0 0 | 103,259 | | 146 | 16 | | | 99 22,395 | | | 2 12.5 | | | 201 | | 115 | | 150 | | 726,165
846.129 | 1,149,613 | 21,321 | | | | 42,066 | 0.295 | | 67,369 | | | 839 | | 0 0 | 103,325 | | 146 | 16 | | | 00 22,417 | | | 2 12.5 | | | 201 | | 115 | | | | 846,129
764,695 | 1,440,757 | | | | | | | | 67,369 | | | 839 | | 0 0 | 103,325 | | | 16 | | | 11 22,596 | | | 2 12.5 | | | 202 | | 115 | | 150 | | 764,695 | 1,381,990 | | | | | | 0.238 | | 67,461 | | | 839 | | 0 0 | 103,323 | | 147 | 16 | | | 14 22,652 | | | 2 12.5 | | | 202 | | 115 | | 150 | | 647,979 | 1,310,113 | | | | | 39,935 | 0.226 | | 67,172 | | | 839 | | 0 0 | 103,407 | | 147 | 16 | | | 11 22,598 | | | 1 12.5 | | | 202 | | 115 | | | | 687,133 | 1,199,338 | | | | | | | | 52.044 | | | 879 | | 0 0 | 168,379 | | 1147 | 13 | | | 16 17.510 | | | 1 13.74 | | | 202 | | 115 | | | | 661,261 | 1,199,338 | | | | | | | | 51.883 | 614,393 | | 879 | | 0 0 | 168,207 | | 114 | 13 | | | 13 17,470 | | | 1 13.74 | | | 203 | | 115 | | | | 635,139 | 1,136,609 | | | | | 33,471 | 0.196 | | 51,883 | | | 879 | | 0 0 | 168.207 | | 114 | 13 | | | 13 17,470 | | | 1 13.74 | | | 203 | | 115 | | | | 650.292 | 1,134,386 | 13,431 | | | | | | | 44.585 | | | 889 | | 0 0 | 160,609 | | 09 | 11 | | | 75 15.084 | | | 2 15.54 | | | 203 | | 115 | | 150 | | 642.814 | 1.132.569 | | 3,831 | | | | 0.195 | | 44,585 | | | 889 | | 0 0 | 160,609 | | 09 | 11 | | | 75 15,084 | | | 2 15.54 | | | 203 | | 115 | | | | 636.116 | 1,128,902 | 13,661 | | | | | 0.195 | | 44,585 | | | 889 | | 0 0 | 160,609 | | 98 | 11 | 7 | | 75 15.084 | | | 2 15.54 | | | 203 | | 115 | | | | 633,321 | 1,129,399 | | | | | | | | 44,585 | | | 889 | | 0 0 | 160,609 | | 98 | 11 | 7 | | 75 15.084 | | | 2 15.54 | | | 204 | | 115 | | | | 694,571 | 1.129.005 | 13.721 | | | | 28,997 | 0.195 | | 31,373 | | | 929 | | 0 0 | 227.801 | | 70 | 8 | 5 | | 21 10,705 | | 3 | 0 16.7 | | | 204 | 350 | 115 | 1.300 | 150 | Yes | 624,387 | 1.118.359 | 13.287 | 3.831 | 15.853 | 74,647 | 32,971 | 0.193 | 562.510 | 44,585 | 607.095 | 387.127 | 889 | | 0 0 | 160,609 | 39,721 | 98 | 11 | 7 | | 75 15.084 | | 4 | 2 15.54 | 223.831 | | 204 | 400 | 115 | 1,400 | 150 | Yes | 684,607 | 1,112,749 | 13,450 | 3,694 | 11,432 | 74,272 | 28,577 | 0.192 | 642,870 | 31,373 | 674,243 | 387,127 | 92% | | 0 0 | 227,801 | 28,188 | 70 | 8 | 5 | 57 62 | 21 10,705 | 311 | 3 | 0 16.73 | 223,944 | | 204 | 400 | 115 | 1,400 | 150 | Yes | 681,779 | 1,110,876 | 13,322 | 3,694 | 11,625 | 74,147 | 28,641 | 0.192 | 642,870 | 31,373 | 674,243 | 387,127 | 929 | | 0 0 | 227,801 | 28,188 | 70 | 8 | 5 | | 21 10,705 | | 3 | 0 16.73 | 223,944 | | 204 | 400 | 115 | 1,400 | 150 | Yes | 675,021 | 1,104,527 | 13,156 | 3,694 | 11,818 | 73,723 | 28,668 | 0.19 | 642,870 | 31,373 | 674,243 | 387,127 | 92% | | 0 0 | 227,801 | 28,188 | 70 | 8 | 5 | 57 62 | 21 10,705 | 311 | 3 | 0 16.73 | 223,944 | | 205 | 400 | 115 | 1,600 | 150 | Yes | 695,083 | 1,101,555 | 13,926 | 3,910 | 9,295 | 73,525 | 27,131 | 0.19 | 642,870 |
24,077 | 666,946 | 387,127 | 949 | | 0 0 | 219,691 | 21,834 | 54 | 6 | 4 | 44 48 | 31 8,292 | 2 247 | 2 | 3 19.13 | 226,957 | | Sunsho | 400 | 115 | 1,600 | 150 | Yes | 500,235 | 820,950 | 10,921 | 3,910 | 6,575 | 54,796 | 21,407 | 0.142 | 642,870 | 24,077 | 666,946 | 387,127 | 949 | | 0 0 | 219,691 | 21,834 | 54 | 6 | 4 | 44 48 | 8,292 | 2 247 | 2 | 3 19.13 | 226,957 | | | | | | | | | | | | | | Comb | ined Improv | ement - Lo | s Angeles C | ommercial (wit | h Genset) | | | | | | | | | | | | | | | | |------------------------------|-----|---------------|-------------|---------|--------------------|---------------|-----------|------------------|-------|------------|--------------|-----------|-------------|------------|-------------|------------------|------------|-----------|----------|-----------|-------------|---------------|-------|---------------|---------|-------|---------------|-------------|--------|-----------|----------|------------| $\overline{}$ | | Em | issions | | | 1 | | | | | | | | | | \neg | | Total Capital | | | | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | | Excess | | | $\overline{}$ | | | $\overline{}$ | | Genset | Gerset | Battery | Battery | | | PV | Diesel Genset | 1kWh Li-ior | Convert | er Efficiency Case | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | | Production | Production | Production | | Fraction | Shortage | Unmet Loa | Electricity | CO2 | co | UHC | PM | 502 | NOx | Genset Fuel | Hours | Starts | Autonomy | Throughput | | | kW | kW | Quantity | kW | | \$ | \$ | S/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | L/yr | hr/yr | starts/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 400 | 115 | 1,: | .00 | ISO Yes | 639,479 | 1,133,138 | 17,620 | 3,419 | 11,911 | 75,633 | 32,95 | 0.195 | 642,870 | 44,477 | 687,347 | 387,127 | 0.8 | 9 | 0 | 242,09 | 39,553 | 98 | 3 1 | 1 | 7 7 | 9 87: | 15,02 | 0 424 | 4 | 7 13.15 | 218,417 | | Deutsche Bank | 400 | 115 | 1,: | .00 1 | ISO Yes | 545,561 | 977,116 | 13,376 | 3,436 | 11,993 | 65,219 | 28,80 | 0.168 | 642,870 | 44,670 | 687,540 | 387,127 | 7 0.8 | В | 0 | 242,30 | 39,825 | 98 | 3 1 | 1 | 7 8 | 0 87 | 15,12 | 4 431 | 4 | 7 13.15 | 218,378 | | McKinsey | 400 | 115 | 1,: | .00 1 | ISO Yes | 512,308 | 922,047 | 11,870 | 3,439 | 12,039 | 61,544 | 27,34 | 0.159 | 642,870 | | 687,736 | | | В | 0 | 242,51 | 39,978 | 99 | 1 | 1 | 7 8 | 0 88: | 15,18 | 2 43: | 4 | 7 13.19 | 218,325 | | Department of Energy | 400 | 115 | 1,1 | 00 1 | ISO Yes | 500,219 | 820,934 | 10,921 | 3,910 | 6,575 | 54,795 | 21,40 | 7 0.142 | 642,870 | | | | 7 0.9 | 4 | 0 | 219,69 | 21,834 | 54 | | 5 | 4 4 | 4 48: | 8,29 | 2 24 | 2 | 3 19.12 | | | Battery OEM | 400 | 115 | 1,0 | 000 1 | ISO Yes | 476,059 | 780,350 | 9,825 | 3,910 | 6,575 | 52,086 | 20,31 | 0.135 | 642,870 | 24,077 | 666,946 | 387,127 | 7 0.9 | 4 | 0 | 219,69 | 21,834 | 54 | | 5 | 4 4 | 48: | 8,29 | 2 24 | 2 | 3 19.12 | 226,957 | ## COMMERCIAL TABLES - HONOLULU | | | | | | | | | | | | В | ase Cas | e - Honolu | lu Commer | cial (with Gen | set) | | | | | | | | | | | | | | | |-----------|-----------|-----|-------|------------|--------------------|-----------|------------------|-----------|------------|--------------|-----------|---------|------------|-----------|------------------|-------------|-----------|----------|--------|---------|---------|---------|---------|---------|-----------|---------|--------|------------|---------|------------| | | Emissions | | | | | | | | | | | | 7 | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | | | Genset | Genset | Genset B | Battery | Battery | | Year PV | Diesel | | | | Total Capital Cost | Total NPC | Replacement Cost | | Cost | Cost | | | | | Production | Load Served | Fraction | Shortage | Load | | | | JHC P | | 2 NOx | Fuel | Hours | | | Throughput | | kV | / kW | | | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | | | | | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr k | kg/yr k | g/yr kg | /yr kg/yr | L/yr | hr/yr | starts/yeh | | kWh/yr | | 2014 5 | | 150 | 1,950 | 200 | | 2,187,644 | | 7,650 | 42,030 | 231,801 | | 0.321 | | | 935,131 | | | | 0 (| 107,969 | | 300 | 33 | | 244 2,6 | | 1,000 | | 18.91 | 391,066 | | 2016 5 | | 150 | 1,950 | 250 | | 1,921,887 | 27,947 | 7,429 | 33,696 | | | 0.264 | | | 932,382 | | | | 0 (| 104,500 | | 290 | 32 | 22 | 236 2,5 | | | | 18.91 | 393,545 | | 2018 5 | | 150 | 1,950 | 200 | | 2,403,060 | 26,848 | 7,061 | 29,232 | | | 0.234 | | 113,792 | 992,461 | 722,70 | | | 0 (| 164,542 | 101,552 | 251 | 28 | 19 | 204 2,2 | | | | 18.91 | 393,830 | | 2020 5 | | 150 | 1,950 | 200 | | 2,284,343 | 24,365 | 7,166 | 30,513 | 152,472 | | 0.211 | | 112,103 | 990,772 | | | | 0 (| 162,639 | 101,325 | 250 | 28 | | 203 2,2 | | | | 18.91 | 394,939 | | 2022 6 | | 150 | 1,950 | 250 | | 2,144,251 | 21,174 | 6,671 | 27,686 | | | 0.198 | | 97,955 | 1,056,504 | | | | 0 (| 229,142 | 87,839 | 217 | 24 | | 176 1,9 | | | | 18.91 | 391,482 | | 2024 6 | | 150 | 2,000 | 250 | | 2,011,529 | | 6,321 | 23,907 | 134,263 | | 0.186 | | 81,612 | | | | | 0 (| 292,786 | 73,288 | 181 | 20 | | 1,6 | | 619 | | 19.4 | 394,032 | | 2026 6 | | 150 | 2,200 | 250 | | 1,920,512 | | 6,410 | 21,131 | 128,188 | | 0.177 | | 69,672 | 1,108,101 | 722,70 | | | 0 (| 279,324 | 62,805 | 155 | 17 | | 126 1,3 | | | | 21.34 | 399,672 | | 2028 6 | | 150 | 2,200 | 250 | | 1,855,818 | | 6,410 | 21,727 | 123,870 | | 0.171 | | 69,672 | 1,108,101 | | | | 0 1 | 279,324 | 62,805 | 155 | 17 | | 126 1,3 | | | | 21.34 | 399,672 | | 2030 6 | | 150 | 2,200 | 250 | | 1,796,005 | | 6,410 | 22,300 | | | 0.166 | | 69,672 | 1,108,101 | | | | 0 1 | 279,324 | 62,805 | 155 | 17 | | 126 1,3 | | | 5 43 | 21.34 | 399,672 | | 2032 6 | | 150 | 2,200 | 250 | | 1,789,675 | 14,495 | 6,410 | 22,920 | | | 0.165 | | | 1,108,101 | 722,70 | | | 0 1 | 279,324 | 62,805 | 155 | 17 | | 126 1,3 | | | 5 43 | 21.34 | 399,672 | | 2034 6 | | 150 | 2,200 | 250 | | 1,785,093 | 14,190 | 6,410 | 23,802 | 119,149 | | 0.165 | | 69,672 | 1,108,101 | 722,70 | | | 0 1 | 279,324 | 62,805 | 155 | 17 | | 126 1,3 | | | | 21.34 | 399,672 | | 2036 6 | | 150 | 2,200 | 250 | | 1,777,732 | | 6,410 | 24,351 | 118,658 | | | | | 1,108,101 | | | | 0 (| 279,324 | 62,805 | 155 | 17 | | 126 1,3 | | | | 21.34 | 399,672 | | 2038 6 | | 150 | 2,200 | 250 | | 1,777,996 | | 6,410 | 24,899 | 118,675 | | 0.164 | | | 1,108,101 | | | | 0 1 | 279,324 | 62,805 | 155 | 17 | 12 | 126 1,3 | | | | 21.34 | 399,672 | | 2040 7 | | 150 | 2,350 | 300
250 | | 1,777,217 | 14,278 | 6,226 | 19,903 | 118,623 | | 0.164 | | 54,043 | 1,172,351 | | | | 0 1 | 342,658 | 48,439 | 120 | 13 | 9 | 97 1,0 | | | | 22.79 | 402,103 | | 2042 6 | | 150 | 2,200 | | | 1,758,559 | 13,313 | 6,410 | 25,066 | | | | | 69,672 | 1,108,101 | | | | 0 1 | 279,324 | 62,805 | 155 | 17 | 12 | 126 1,3 | | | | 21.34 | 399,672 | | 2044 7 | | 150 | 2,350 | 300 | | 1,749,555 | 13,824 | 6,226 | 19,646 | | | 0.162 | | 54,043 | 1,172,351 | 722,70 | | | 0 1 | 342,658 | 48,439 | 120 | 13 | 9 | 97 1,0 | | | | 22.79 | 402,103 | | 2046 7 | | 150 | 2,350 | 300 | | 1,746,526 | | 6,226 | 19,977 | 116,575 | | 0.161 | | 54,043 | 1,172,351 | | | | 1 | 342,658 | | 120 | 13 | 9 | 97 1,0 | | | / 33 | 22.79 | 402,103 | | 2048 7 | UU | 150 | 2,350 | 300 | | 1,735,499 | | 6,226 | 20,308 | | | 0.16 | | 54,043 | 1,172,351 | | | | 1 | 342,658 | 48,439 | 120 | 13 | 9 | 97 1,0 | 7 18,39 | | / 33 | 22.79 | 402,103 | | 2050 7 | 00 | 150 | 2,350 | 300 | | 1,732,680 | | 6,226 | 20,620 | | | 0.16 | | | 1,172,351 | | | | 0 1 | 342,658 | 48,439 | 120 | 13 | 9 | 97 1,0 | | | 33 | 22.79 | 402,103 | | Sunshot 7 | טט | 150 | 2,350 | 300 | 808,613 | 1,248,842 | 8,571 | 6,226 | 14,587 | 83,356 | 29,384 | 0.115 | 1,118,308 | 54,043 | 1,172,351 | 722,70 | 93% | 1 | 1 | 342,658 | 48,439 | 120 | 13 | 9 | 97 1,0 | 7 18,39 | 407 | / 33 | 22.79 | 402,103 | | | | | | | | | | | Base Case | e - Honoluli | u Comn | nercial (wit | nout Gense | t) | | | | | | | | | | | | | |--------|--------|-------------|-----------|--------------------|-----------|------------------|-----------|------------|--------------|--------------|--------|--------------|------------|-------------|-----------|----------|--------|-------------|-------|-------|-------|-------|-------|---------|----------|------------| Emis | sions | | | | | | | | | | | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | 1 | | 1 | | 1 | | Battery | Battery | | Yea | r PV | 1kWh Li-ion | Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | | | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | CO2 | CO | UHC | PM | SO2 | NOx / | Autonomy | Throughput | | | kW | Quantity | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr I | nr | kWh/yr | | 201 | 4 1,00 | 0 3,900 | 300 | 2,667,479 | 3,300,708 | 59,297 | 7,800 | 0 | 349,741 | 67,097 | 0.484 | 1,597,581 | 1,597,581 | 722,103 | 100% | 718 | 596 | 767,193 | 0 | 0 | 0 | 0 | 0 | 0 | 37.83 | 404,299 | | 201 | 6 1,00 | 0 3,900 | 300 | 2,275,185 | 2,859,423 | 50,240 | 7,800 | 0 | 284,062 | 58,039 | 0.393 | 1,597,581 | 1,597,581 | 722,103 | 100% | 718 | 596 | 767,193 | 0 | 0 | 0 | 0 | 0 | 0 | 37.83 | 404,299 | | 201 | 8 1,00 | | | | 3,496,461 | 49,316 | 7,800 | 0 | 245,602 | 57,116 | 0.34 | 1,597,581 | 1,597,581 | 722,103 | 100% | 718 | 596 | 767,193 | 0 | 0 | 0 | 0 | 0 | 0 | 37.83 | 404,299 | | 202 | 0 1,00 | 0 3,900 | 300 | 2,400,584 | 3,175,959 |
43,954 | 7,800 | 0 | 211,985 | 51,754 | 0.294 | 1,597,581 | 1,597,581 | 722,103 | 100% | 718 | 596 | 767,193 | 0 | 0 | 0 | 0 | 0 | 0 | 37.83 | 404,299 | | 202 | | | 300 | | 2,886,182 | | | 0 | 192,643 | | | 1,597,581 | 1,597,581 | 722,103 | | 718 | | | | 0 | 0 | 0 | 0 | 0 | 37.83 | | | 202 | | | | 1,997,637 | 2,636,392 | 34,835 | | 0 | 175,970 | | | 1,597,581 | 1,597,581 | 722,103 | | 718 | | | | 0 | 0 | 0 | 0 | 0 | 37.83 | | | 202 | 5 1,00 | | 300 | 1,867,843 | 2,451,177 | 31,136 | | 0 | 163,608 | | | 1,597,581 | 1,597,581 | 722,103 | | 718 | | | | 0 | 0 | . 0 | 0 | 0 | 37.83 | | | 202 | | | 300 | | 2,320,403 | 30,952 | | 0 | 154,879 | 39,552 | 0.214 | 1,437,823 | 1,437,823 | 722,149 | | 670 | | | . 0 | 0 | 0 | 0 | 0 | 0 | 41.71 | 1 408,357 | | 203 | | | | | 2,200,508 | | | 0 | 146,876 | | | 1,437,823 | 1,437,823 | | | 670 | | | | 0 | 0 | . 0 | 0 | 0 | 41.71 | | | 203 | | | | | 2,169,978 | | | 0 | 144,839 | | | 1,437,823 | 1,437,823 | | | 670 | | | | 0 | 0 | 0 | 0 | 0 | 41.71 | | | 203 | | | | | | | | 0 | 142,763 | | | 1,437,823 | 1,437,823 | 722,149 | | 670 | | | | 0 | 0 | . 0 | 0 | 0 | 41.71 | | | 203 | | | | 1,585,099 | 2,112,140 | 26,578 | | 0 | 140,978 | | | 1,437,823 | 1,437,823 | | | 670 | | | | 0 | 0 | 0 | 0 | 0 | 41.71 | | | 203 | | | | | 2,096,592 | | | 0 | 139,940 | | | 1,437,823 | | | | 670 | | | | 0 | 0 | . 0 | 0 | 0 | 41.71 | | | 204 | | | | | 2,073,026 | 25,765 | | 0 | 138,367 | 34,365 | | 1,437,823 | 1,437,823 | 722,149 | | 670 | | | | 0 | 0 | 0 | 0 | 0 | 41.71 | 1 408,357 | | 204 | | | | | 2,057,418 | | | 0 | 137,326 | 33,943 | 0.19 | 1,437,823 | 1,437,823 | 722,149 | | 670 | | | | 0 | 0 | . 0 | 0 | 0 | 41.71 | | | 204 | | | 300 | | 2,033,279 | | | 0 | 135,714 | | | 1,437,823 | | | | 670 | | | | 0 | 0 | . 0 | 0 | 0 | 41.71 | | | 204 | | | | 1,522,164 | 2,018,660 | | | 0 | 134,739 | | | 1,437,823 | 1,437,823 | | | 670 | | | | 0 | 0 | . 0 | 0 | 0 | 41.71 | | | 204 | | 0 4,300 | | 1,504,693 | 1,994,237 | 24,075 | | 0 | 133,109 | 32,675 | 0.184 | 1,437,823 | 1,437,823 | 722,149 | | 670 | | | | 0 | 0 | 0 | 0 | 0 | 41.71 | | | 205 | 0 90 | | 300 | 1,496,523 | 1,980,506 | 23,704 | | 0 | 132,192 | 32,304 | 0.183 | 1,437,823 | 1,437,823 | 722,149 | | 670 | 550 | | | 0 | 0 | . 0 | 0 | 0 | 41.71 | 1 408,357 | | Sunsho | t 90 | 0 4,300 | 300 | 1,032,994 | 1,398,549 | 15,800 | 8,600 | 0 | 93,348 | 24,400 | 0.129 | 1,437,823 | 1,437,823 | 722,149 | 100% | 670 | 550 | 606,501 | . 0 | 0 | 0 | 0 | 0 | 0 | 41.71 | 1 408,357 | | | | | | | | | | | _ | Accelerated | Technolog | zy Improve | ment - Hon | olulu Com | mercial (with | Genset) | | | | | | | | | | | | | | | |------------------------------|-----|---------------|-------------|-----------|---------------|-----------|------------------|-----------|------------|--------------|-----------|------------|------------|------------|------------------|-------------|-----------|----------|--------|-------------|--------|-------|--------|-------|-------|---------|----------|------------|-----------|--------------| Emissi | ons | _ | \neg | | | | | | | | | | | Total Capital | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | | | | | | G | enset Ge | nset Gense | t Battery | Battery | | Battery Projection Study | PV | Diesel Genset | 1kWh Li-ion | Converter | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | COE | Production | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | CO2 | co | UHC | PM | SO2 | NOx F | uel Ho | urs Starts | Autonom | y Throughput | | | kW | kW | Quantity | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | | /yr hr/ | yr starts/ | yr hr | kWh/yr | | Bloomberg New Energy Finance | 800 | 150 | 1,950 | 250 | 1,164,214 | 1,804,162 | 21,602 | 5,588 | 15,525 | 120,422 | 42,714 | 0.167 | 1,278,062 | 56,709 | 1,334,771 | 722,700 | 92% | 0 | 0 | 507,561 | 51,553 | 127 | 14 | 10 | 104 | 1,135 1 | 19,577 | 450 | 39 18.5 | 91 391,945 | | Deutsche Bank | 750 | 150 | 2,050 | 250 | 974,837 | 1,519,930 | 14,541 | 5,829 | 16,013 | 101,450 | | 0.14 | 1,198,187 | | | | | 0 | 0 | 428,648 | | 131 | 15 | 10 | 107 | 1,171 2 | 20,193 | 461 | 40 19. | | | McKinsey | 750 | 150 | 2,050 | 250 | 912,866 | 1,415,873 | 11,732 | 5,829 | 16,013 | 94,505 | 33,574 | 0.131 | 1,198,187 | 58,645 | 1,256,833 | 722,700 | 92% | 0 | 0 | 428,648 | 53,176 | 131 | 15 | 10 | 107 | 1,171 2 | 20,193 | 461 | 40 19. | 88 395,974 | | Department of Energy | 700 | 150 | 2,350 | 300 | 808,590 | 1,248,819 | 8,571 | 6,226 | 14,587 | | 29,384 | 0.115 | 1,118,308 | 54,043 | | | 93% | 0 | 0 | 342,658 | 48,439 | 120 | 13 | 9 | 97 | 1,067 1 | 18,395 | 407 | 33 22. | 79 402,103 | | Battery OEM | 750 | 150 | 2,750 | 300 | 835,293 | 1,184,619 | 7,644 | 6,483 | 9,189 | 79,069 | 23,316 | 0.109 | 1,198,187 | 33,777 | 1,231,964 | 722,700 | 95% | 0 | 0 | 400,630 | 30,516 | 75 | 8 | 6 | 61 | 672 1 | 1,588 | 262 | 21 26. | 67 407,643 | | | Demand-side Improvement - Honolulu Commercial (with Genset) |--------------|---|---------------|-------------------|-----------|------------|----------------------|-----------|----------------------------------|-------------------|--------------------|----------------------|------------------|----------|-------------|----------------------|--------------------------------|--------------------|-----------------------|----------------------|--------|---------|--------|-------|-------------|---------|---------|----------|--------------|------------------|---------------|----------------------| | | | | | | | | | | | | De | mano-side i | mproveme | nt - Honoit | iiu Commer | ciai (with Gen: | set) | | | | | _ | | | | | _ | | | | | | | _ | | | | _ | | | | | | | | | | | | | | | | | - | _ | Emission | 15 | _ | + | | _ | | | | | | | | | | | | | | | | | l | | | | | | | I. I | | | | | | | 1. | l. | | | I. | | Year | | Diesel Genset | | | Efficiency | Total Capital Cost | | Total Annual
Replacement Cost | Total O&M
Cost | Total Fuel
Cost | Total
Annual Cost | Operating | COE | Production | Genset
Production | Total Electrical
Production | | Renewable
Fraction | Capacity
Shortage | Unmet | | CO2 | co | UHC PI | | . NOx | Genset | | Genset
Starts | | Battery | | Year | | Diesel Genset | | Converter | Lase | Total Capital Cost | | \$/vr | | C for | S/vr | Cost | | kWh/vr | | | kWh/vr | Fraction | kWh/vr | | kWh/vr | LU2 | CO . | UHL PR | A SO2 | : NUX | Fuel | Hours | | Autonomy | Throughput
kWh/vr | | 2014 | kW
350 | 150 | Quantity
1.200 | KW | Yes | 975,190 | 1.573.024 | | | 27.884 | 5/yr
166.677 | 5/yr
63.346 | 0.349 | | 90.379 | 649.533 | 476,981 | 81% | | kwn/yr | 101.094 | 80.513 | Kg/yr | 22 Kg/yr Kg | /yr kg/ | 62 1.77 | 3 30.575 | nr/yr
665 | starts/yr | nr
4 11.64 | 9 0 | | | | | | | | | 9 | | | | 2016
2018 | | | | | Yes | 846,138
1.090,437 | 1,398,879 | | | 23,038
17.468 | 138,968 | 54,911
46.050 | 0.291 | | 90,296 | 649,450
707.113 | 476,981
476,981 | 81% | | 0 | 101,008 | 80,459 | | 22 | | | 2 30,554 | | 9 | 11.64 | | | | | | | | | | 1,746,018 | | | | | | | | 68,082 | | | 86% | | 0 | 159,493 | | | 17 | | | | | | 12.61 | | | 2020 | | | | | Yes | 985,686 | 1,662,751 | 22,244 | | 18,397
17.853 | 110,983 | 45,192
43.071 | 0.233 | | 67,839 | 706,870
702,942 | 476,981
476,981 | 86% | | 0 | 159,236 | | | 17 | | | 6 23,200 | | - 6 | 12.61 | | | 2022 | | | | | | 922,198 | | | | | 104,624 | | 0.219 | | 63,911 | | | 87% | | 9 | 155,623 | | | 15 | | | 8 21,510 | | 5 | 13.09 | | | 2024
2026 | | | | | Yes | 852,378
804.757 | 1,483,768 | | | 18,477
19.058 | 99,037
95.132 | 42,143 | 0.208 | | 63,911 | 702,942
702,942 | 476,981 | 87%
87% | | 0 | 155,623 | | | 15 | | | 8 21,510 | | . 5 | 13.09 | 264,780 | | | | | | | Yes | | 1,425,269 | | 4,429 | | | 41,417 | | | 63,911 | | | | | 9 | 155,623 | | | 15 | | | 8 21,510 | | 5 | 13.09 | | | 2028 | 450 | | | | Yes | 826,104 | | | 4,230
4.230 | 16,663 | 92,520 | 37,381 | 0.194 | | 53,580 | 772,491 | 476,981 | 89% | | 0 | 225,366 | 48,166 | | 13 | | 97 1,06 | | | | 7 13.09 | | | 2030 | | | | | Yes | 794,526 | 1,349,270 | | | 17,102 | 90,059 | 37,027 | 0.189 | | 53,580 | 772,491 | | | | 0 | 225,366 | 48,166 | | 13 | | | 1 18,29 | | 4 | 7 13.09 | | | 2032 | | | | | Yes | 788,815 | 1,346,810 | | | 17,578 | 89,895 | 37,244 | 0.188 | | 53,580 | 772,491 | 476,981 | 89% | | 0 | 225,366 | 48,166 | | 13 | | | 1 18,291 | | 4 | 7 13.09 | | | 2034 | | 150 | | | Yes | 780,184 | | 15,249 | | 18,254 | 89,808 | 37,734 | | | 53,580 | 772,491 | 476,981 | 89% | | 0 | 225,366 | 48,166 | | 13 | | | 1 18,291 | | 4 | 7 13.09 | | | 203€ | | | | | Yes | 772,363 | 1,341,745 | | 4,230 | 18,675 | 89,557 | 38,004 | 0.188 | | 53,580 | 772,491 | 476,981 | 89% | | 0 | 225,366 | 48,166 | | 13 | | 97 1,06 | | | 4 | 7 13.09 | 263,848 | | 2038 | | | | | Yes | 769,461 | 1,343,166 | | | 19,096 | 89,652 | 38,293 | 0.188 | | 53,580 | 772,491 | | 89% | | 0 | 225,366 | | | 13 | 9 | | 1 18,29 | | | 7 13.09 | | | 2040 | | | | | Yes | 762,234 | | | 4,230 | 19,791 | 89,741 | 38,865 | 0.188 | | 53,580 | 772,491 | 476,981 | 89% | | 0 | 225,366 | 48,166 | | 13 | 9 | 97 1,06 | | | | 7 13.09 | 263,848 | | 2042 | | | | | Yes | 759,318 | 1,331,111 | | 4,230 | 19,224 | 88,847 | 38,165 | 0.186 | | 53,580 | 772,491 | | 89% | | 0 | 225,366 | 48,166 | | 13 | 9 | | 1 18,291 | | | 7 13.09 | | | 2044 | | | | | Yes | 829,683 | 1,324,557 | 17,579 | | 10,720 | 88,410 | 33,031 | 0.185 | | 29,494 | 748,406 | | 94% | | 0 | 198,913 | 26,432 | 65 | 7 | 5 | | 2 10,038 | | | 18.91 | | | 2046 | | | | | Yes | 825,744 | | 17,399 | | 10,901 | 88,148 |
33,032 | 0.185 | | 29,494 | 748,406 | | 94% | | 0 | 198,913 | 26,432 | 65 | 7 | 5 | | 2 10,038 | | | 18.91 | | | 2048 | | 150 | | | Yes | 817,402 | 1,311,585 | 17,171 | 4,733 | 11,081 | 87,544 | 32,985 | 0.184 | | 29,494 | 748,406 | 476,981 | | | 0 | 198,913 | 26,432 | | 7 | 5 | | 2 10,038 | | | 18.91 | | | 2050 | 450 | | | | Yes | 813,697 | 1,307,915 | | | 11,252 | 87,299 | 32,987 | 0.183 | | 29,494 | 748,406 | | 94% | | 0 | 198,913 | 26,432 | | 7 | 5 | | 2 10,038 | | | 18.91 | | | Sunshot | 450 | 150 | 1,950 | 200 | Yes . | 587,539 | 977,149 | 13,313 | 4,733 | 7,960 | 65,221 | 26,005 | 0.137 | 718,912 | 29,494 | 748,406 | 476,981 | 94% | | 0 | 198,913 | 26,432 | 65 | 7 | 5 | 53 58 | 2 10,038 | 222 | 2 | 18.91 | 272,616 | | | | | | | | | | | | | | | Comb | oined Impre | wement - I | Honolulu Co | mmercial (with | Genset) | | | | | | | | | | | | | | | | |------------------------------|-----|---------------|------------|--------|---------|-----------------|---------------|-----------|------------------|-----------|------------|--------------|-----------|-------------|------------|-------------|------------------|-------------|-----------|----------|------------|---------|---------------|-------|-------|---------------|-------|-------|-------------|--------|-----------|----------|------------| $\overline{}$ | | Emi | issions | | | 1 | | | | | | | П | | | \neg | Т | | Total Capital | | Total Annual | Total O&M | Total Fuel | Total Annual | Operating | | PV | Genset | Total Electrical | AC Primary | Renewable | Capacity | | Excess | | | | $\overline{}$ | | | | Genset | Gerset | Battery | Battery | | Battery Projection Study | PV | Diesel Genset | 1kWh Li-io | Conw | orter E | Efficiency Case | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | Cost | COE | | Production | Production | Load Served | Fraction | Shortage | Unmet Load | | CO2 | co | UHC | PM | 502 | NOx | Gerset Fuel | Hours | Starts | Autonomy | Throughput | | | kW | kW | Quantity | kW | | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | kg/yr | L/yr | hr/yr | starts/yr | | kWh/yr | | Bloomberg New Energy Finance | 500 | 150 | 0 1, | 250 | 150 Y | res | 769,808 | 1,346,75 | 9 21,62 | 8 3,858 | 13,024 | 89,892 | 38,510 | 0.188 | 798,79 | 48,31 | 847,100 | 476,981 | 0.9 | | | 300,389 | 43,248 | 107 | 1 | 2 | 8 87 | 953 | 16,423 | 362 | 4 | 12.12 | | | Deutsche Bank | 500 | 150 | 0 1, | 250 | 150 Y | res | 663,083 | 1,160,58 | 7 16,30 | 0 3,865 | 13,042 | 77,465 | 33,207 | 0.162 | 798,79 | 1 48,312 | 847,100 | 476,981 | 0.9 | | | 300,384 | 43,308 | 107 | 1 | 2 | 8 87 | 954 | 16,446 | 364 | 4 | 12.12 | 261,73 | | McKinsey | 500 | 150 | 0 1, | 250 | 150 Y | res | 625,295 | 1,094,50 | 8 14,41 | 2 3,865 | 13,042 | 73,055 | 31,318 | 0.153 | 798,79 | 1 48,312 | 847,100 | 476,981 | 0.9 | | - | 300,384 | 43,308 | 107 | 1 | 2 | 8 87 | 954 | 16,446 | 364 | 4 | 12.12 | | | Department of Energy | 450 | 150 | 0 1, | 950 | 200 Y | res | 587,519 | 977,13 | 0 13,31 | 3 4,733 | 7,960 | 65,220 | 26,005 | 0.137 | 718,91 | | | | 0.94 | - (| | 198,913 | 26,432 | | | 7 | 5 53 | 583 | 10,038 | 222 | 2 | 18.91 | 272,616 | | Battery OEM | 450 | 150 | 0 1, | 950 | 200 Y | res | 558,074 | 927,66 | 8 11,97 | 7 4,733 | 7,960 | 61,919 | 24,669 | 0.13 | 718,91 | 29,49 | 748,40 | 476,981 | 0.94 | | | 198,913 | 26,432 | 65 | | 7 | 5 53 | 583 | 10,038 | 222 | 2 | 18.91 | 272,616 | #### COMMERCIAL TABLES - ALL LOCATIONS | | | Cor | nmercial (All So | enario and | Geography) Fina | ncial Costs | | | |----------|--------------|------------|------------------|----------------|------------------|--------------|------------------|----------| | | | PV Capital | PV Replacement | Li-ion Battery | Li-ion Battery | Inverter | Inverter | Interest | | Year | Diesel Price | Cost | Cost | Capital Cost | Replacement Cost | Capital Cost | Replacement Cost | Rate | | | \$/L | \$/Wdc | \$/Wdc | \$/kWh | \$/kWh | \$ | \$ | % | | 2014 | 0.912 | 1.49 | 3.18 | 289.61 | 619.88 | 0.16 | 0.35 | 9.5 | | 2016 | 0.754 | 1.32 | 2.85 | 234.15 | 506.05 | 0.14 | 0.31 | 8.7 | | 2018 | 0.758 | 1.58 | 2.6 | 269.83 | 443.47 | 0.17 | 0.28 | 4.9 | | 2020 | 0.793 | 1.43 | 2.37 | 236.56 | 391.23 | 0.16 | 0.26 | 4.4 | | 2022 | 0.83 | 1.32 | 2.19 | 210.4 | 347.96 | 0.14 | 0.24 | 4.4 | | 2024 | 0.859 | 1.23 | 2.03 | 186.83 | 308.99 | 0.13 | 0.22 | 4.4 | | 2026 | 0.886 | 1.18 | 1.95 | 166.37 | 275.15 | 0.13 | 0.21 | 4.4 | | 2028 | 0.911 | 1.16 | 1.91 | 149.96 | 248 | 0.13 | 0.21 | 4.4 | | 2030 | 0.935 | 1.13 | 1.88 | 137.68 | 227.69 | 0.12 | 0.2 | 4.4 | | 2032 | 0.961 | 1.13 | 1.86 | 133.45 | 220.7 | 0.12 | 0.2 | 4.4 | | 2034 | 0.998 | 1.12 | 1.85 | 130.39 | 215.64 | 0.12 | 0.2 | 4.4 | | 2036 | 1.021 | 1.11 | 1.84 | 127.93 | 211.58 | 0.12 | 0.2 | 4.4 | | 2038 | 1.044 | 1.11 | 1.83 | 125.78 | 208.01 | 0.12 | 0.2 | 4.4 | | 2040 | 1.082 | 1.1 | 1.82 | 123.76 | 204.68 | 0.12 | 0.2 | 4.4 | | 2042 | 1.051 | 1.1 | 1.82 | 121.6 | 201.1 | 0.12 | 0.2 | 4.4 | | 2044 | 1.068 | 1.09 | 1.81 | 119.5 | 197.64 | 0.12 | 0.2 | 4.4 | | 2046 | 1.086 | 1.09 | 1.8 | 117.48 | 194.28 | 0.12 | 0.2 | 4.4 | | 2048 | 1.104 | 1.08 | 1.79 | 115.51 | 191.04 | 0.12 | 0.19 | 4.4 | | 2050 | 1.121 | 1.08 | 1.78 | 113.61 | 187.89 | 0.12 | 0.19 | 4.4 | | Conchas. | 0.702 | 0.76 | 1.25 | 75.50 | 125 | 0.08 | 0.13 | - 4 | | Commercial (Accelerate | ed Technol | ogy and Combin | ne Improvem | ent Scenario) All | Geography | Financial Costs | |------------------------------|----------------|----------------|----------------|----------------------------|--------------------|----------------------| | | | | Li-ion Battery | | | Inverter Replacement | | Battery Projection Study | Cost
\$/Wdc | | | Replacement Cost
\$/kWh | Capital Cost
\$ | Cost | | Bloomberg New Energy Finance | 0.76 | 1.25 | 236.52 | 391.23 | 0.08 | 0.13 | | Deutsche Bank | 0.76 | 1.25 | 151.14 | 250 | 0.08 | 0.13 | | McKinsey | 0.76 | 1.25 | 120.91 | 200 | 0.08 | 0.13 | | Department of Energy | 0.76 | 1.25 | 75.57 | 125 | 0.08 | 0.13 | | Battery OEM | 0.76 | 1.25 | 60.47 | 100 | 0.08 | 0.13 | | | Diesel Prices | | |---------|------------------|----------------| | 1 | gallon = 3.78541 | | | | [2012\$/gallon] | [2012\$/liter] | | 2012 | \$3.70 | \$0.98 | | 2013 | \$3.66 | \$0.97 | | 2014 | \$3.45 | \$0.91 | | 2015 | \$2.93 | \$0.77 | | 2016 | \$2.85 | \$0.75 | | 2017 | \$2.84 | \$0.75 | | 2018 | \$2.87 | \$0.76 | | 2019 | \$2.94 | \$0.78 | | 2020 | \$3.00 | \$0.79 | | 2021 | \$3.07 | \$0.81 | | 2022 | \$3.14 | \$0.83 | | 2023 | \$3.20 | \$0.84 | | 2024 | \$3.25 | \$0.86 | | 2025 | \$3.31 | \$0.87 | | 2026 | \$3.35 | \$0.89 | | 2027 | \$3.41 | \$0.90 | | 2028 | \$3.45 | \$0.91 | | 2029 | \$3.50 | \$0.92 | | 2030 | \$3.54 | \$0.93 | | 2031 | \$3.58 | \$0.95 | | 2032 | \$3.64 | \$0.96 | | 2033 | \$3.69 | \$0.97 | | 2034 | \$3.78 | \$1.00 | | 2035 | \$3.82 | \$1.01 | | 2036 | \$3.86 | \$1.02 | | 2037 | \$3.91 | \$1.03 | | 2038 | \$3.95 | \$1.04 | | 2039 | \$4.02 | \$1.06 | | 2040 | \$4.10 | \$1.08 | | 2041 | \$3.94 | \$1.04 | | 2042 | \$3.98 | \$1.05 | | 2043 | \$4.01 | \$1.06 | | 2044 | \$4.04 | \$1.07 | | 2045 | \$4.08 | \$1.08 | | 2046 | \$4.11 | \$1.09 | | 2047 | \$4.14 | \$1.09 | | 2048 | \$4.18 | \$1.10 | | 2049 | \$4.21 | \$1.11 | | 2050 | \$4.24 | \$1.12 | | SunShot | \$3.00 | \$0.79 | ## RESIDENTIAL TABLES - WESTCHESTER, NY | | | | | | | | Base | Case - Westch | ester Resi | dential (10 | 0% Load Me | et) | | | | | | | | |---------|----|-------------|-----------|--------------------|-----------|------------------|-----------|---------------|------------|-------------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Year | PV | 1kWh Li-ion | Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | 2014 | 20 | 240 | 9 | 157,544 | 198,300 | | 480 | 19,862 | | 1.665 | | 25,959 | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2016 | 20 | 240 | 9 | 132,018 | 170,406 | | 480 | 15,692 | 3,535 | 1.316 | 25,959 | 25,959 | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2018 | 20 | 240 | 9 | 167,036 | 215,075 | 2,894 | 480 | 15,108 | | 1.267 | 25,959 | 25,959 | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2020 | 20 | 240 | 9 | 148,898 | 193,603 | | 480 | 13,191 | 3,046 | | | 25,959 | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2022 | 20 | 240 | 9 | 133,713 | 174,253 | | 480 | 11,873 | | 0.995 | 25,959 | 25,959 | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2024 | 20 | 240 | 9 | 120,760 | 157,549 | | 480 | 10,735 | | 0.9 | | | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2026 | 20 | 240 | 9 | 110,639 | 144,170 | | 480 | 9,823 | 2,285 | 0.824 | -, | | 11,927 | 100% | | _ | 12,135 | 140.95 | | | 2028 | 20 | 240 | 9 | 103,123 | 134,040 | | 480 | 9,133 | 2,107 | 0.766 | -, | | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2030 | 20 | 240 | 9 | 97,448 | 126,411 | 1,493 | 480 | 8,613 | | 0.722 | 25,959 | 25,959 | 11,927 | 100% | | 9 | 12,135 | 140.95 | 7,380 | | 2032 | 20 | 240 | 9 | 95,370 | 123,660 | | 480 | 8,426 | | 0.706 | | 25,959 | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2034 | 20 | 240 | 9 | 93,956 | 121,759 | | 480 | 8,296 | | 0.696 | | | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2036 | 20 | 240 | 9 | 92,582 | 119,993 | | 480 | 8,176 | | | | | 11,927 | 100% | | | 12,135 | 140.95 | | | 2038 | 20 | 240 | 9 | 91,525 | 118,593 | | 480 | 8,080 | 1,844 | 0.678 | -, | | 11,927 | 100% | | _ | 12,135 | 140.95 | | | 2040 | 20 | 240 | 9 | 90,526
 117,273 | | 480 | 7,990 | | 0.67 | 25,959 | | 11,927 | 100% | | | 12,135 | 140.95 | | | 2042 | 20 | 240 | 9 | 89,466 | 115,869 | | 480 | 7,895 | | 0.662 | -, | | 11,927 | 100% | | | 12,135 | 140.95 | | | 2044 | 20 | 240 | 9 | 88,436 | 114,506 | | 480 | 7,802 | | | -, | | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2046 | 20 | 240 | 9 | 87,430 | 113,176 | | 480 | 7,711 | 1,754 | 0.647 | 25,959 | | 11,927 | 100% | | 9 | 12,135 | 140.95 | | | 2048 | 20 | 240 | 9 | 86,252 | 111,687 | 1,253 | 480 | 7,610 | | | -, | | 11,927 | 100% | | _ | 12,135 | 140.95 | | | 2050 | 20 | 240 | 9 | 85,496 | 110,627 | | 480 | 7,538 | | | -, | | 11,927 | 100% | | _ | 12,135 | 140.95 | | | Sunshot | 20 | 240 | 9 | 60,002 | 79,079 | 820 | 480 | 5,388 | 1,300 | 0.452 | 25,959 | 25,959 | 11,927 | 100% | 10 | 9 | 12,135 | 140.95 | 7,380 | | | | | | | А | ccelerated Techn | ology Impr | ovement - W | estcheste | r Reside | ntial (100% | Load Met) | | | | | | | | |------------------------------|----|-------------|-----------|---------------|-----------|------------------|------------|--------------|-----------|----------|-------------|------------------|-------------|----------|----------|--------|-------------|----------|-----------| | | | | | Total Capital | | | | Total Annual | | | | Total Electrical | | | Capacity | Unmet | Excess | Battery | Battery | | Battery Projection Study | PV | 1kWh Li-ion | Converter | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughpu | | | kW | | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 20 | 240 | 9 | 123,897 | 168,601 | 2,566 | 480 | 11,488 | 3,046 | 0.963 | 25,959 | 25,959 | 11,927 | 100% | 10 | 9 | 12,135 | 140.95 | 7,38 | | Deutsche Bank | 20 | 240 | 9 | 90,002 | 121,111 | 1,640 | 480 | 8,252 | 2,120 | 0.692 | 25,959 | 25,959 | 11,927 | 100% | 10 | 9 | 12,135 | 140.95 | 7,38 | | McKinsey | 20 | 240 | 9 | 78,002 | 104,298 | 1,312 | 480 | 7,106 | 1,792 | 0.596 | 25,959 | 25,959 | 11,927 | 100% | 10 | | 12,135 | 140.95 | 7,38 | | Department of Energy | 20 | 240 | 9 | 60,002 | 79,079 | 820 | 480 | 5,388 | 1,300 | 0.452 | 25,959 | 25,959 | 11,927 | 100% | 10 | 9 | 12,135 | 140.95 | 7,38 | | Battery OEM | 20 | 240 | 9 | 54,002 | 70,673 | 656 | 480 | 4.815 | 1,136 | 0.404 | 25,959 | 25,959 | 11,927 | 100% | 10 | | 12,135 | 140.95 | 7,38 | | | | | | | | | Demand-sic | le Improver | nent - Westo | hester Resi | dential | (98% Load | Met) | | | | | | | | |---------|----|-------------|-----------|------------|--------------------|-----------|------------------|-------------|--------------|-------------|---------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | Efficiency | | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Year | PV | 1kWh Li-ion | Converter | Case | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | 2014 | 18 | 65 | 7 | Yes | 76,372 | 88,440 | 1,079 | | | 1,209 | 1.08 | | 23,363 | 8,205 | 1 | 172 | 150 | 13,899 | | 4,876 | | 2016 | 18 | 65 | 7 | Yes | 65,431 | 76,947 | | | | | 0.864 | | | 8,205 | 1 | 172 | | | | 4,876 | | 2018 | 18 | | | Yes | 83,473 | 97,939 | | | | | 0.838 | | | | 1 | 172 | | | | 4,876 | | 2020 | 18 | | | Yes | 75,037 | 88,643 | | 130 | | | 0.736 | | | | 1 | 172 | | | | 4,876 | | 2022 | 18 | | | Yes | 67,904 | 80,382 | | | | | 0.668 | | | | 1 | 172 | | | | 4,876 | | 2024 | 14 | | | Yes | 58,991 | 73,519 | | | | | 0.611 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2026 | 14 | | | Yes | 54,714 | 68,089 | | 170 | -,,,,, | | 0.565 | | | 8,205 | 1 | 172 | | -, | | 5,006 | | 2028 | 14 | | | Yes | 51,707 | 64,155 | | | | | 0.533 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2030 | 14 | | | Yes | 49,420 | 61,177 | | 170 | | | 0.508 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2032 | 14 | | | Yes | 48,546 | | | | | | 0.499 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2034 | 14 | | | Yes | 47,976 | 59,322 | | | | | 0.493 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2036 | 14 | | | Yes | 47,351 | 58,558 | | 170 | | | 0.486 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2038 | 14 | | | Yes | 46,907 | 57,993 | | | | | 0.482 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2040 | 14 | | | Yes | 46,484 | 57,456 | | | -, | _ | 0.477 | | | 8,205 | 1 | 172 | | -, | | 5,006 | | 2042 | 14 | | | Yes | 46,040 | 56,890 | | | | | 0.472 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2044 | 14 | | | Yes | 45,606 | 56,338 | | | | | 0.468 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2046 | 14 | | | Yes | 45,180 | | | | | | 0.463 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2048 | 14 | | | Yes | 44,625 | 55,132 | | | | | 0.458 | | | 8,205 | 1 | 172 | | | | 5,006 | | 2050 | 14 | | | Yes | 44,357 | 54,757 | | | | | 0.455 | | | 8,205 | 1 | 172 | | | | 5,006 | | Sunshot | 14 | 85 | 8 | Yes | 31,731 | 39,986 | 392 | 170 | 2,724 | 562 | 0.332 | 18,171 | 18,171 | 8,205 | 1 | 172 | 150 | 8,679 | 49.92 | 5,006 | | | | | | | | | Combined Impr | ovement - ' | Westcheste | r Residentia | al (98% Loa | d Met) | | | | | | | | | |------------------------------|----|-------------|-----------|-----------------|---------------|-----------|------------------|-------------|-------------|--------------|-------------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | | Total Capital | | Total Annual | Total O&M | Total | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Battery Projection Study | PV | 1kWh Li-ion | Converter | Efficiency Case | Cost | Total NPC | Replacement Cost | Cost | Annual Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 18 | 65 | 7 | Yes | 52536 | 66142 | 797 | 130 | 4507 | 927 | 0.549 | 23363 | 23363 | 8205 | 100% | 172 | 150 | 13899 | 38.17 | 4876 | | Deutsche Bank | 18 | 65 | 7 | Yes | 43356 | 53280 | 546 | 130 | 3630 | 676 | 0.442 | 23363 | 23363 | 8205 | 100% | 172 | 150 | 13899 | 38.17 | 4876 | | McKinsey | 18 | 65 | 7 | Yes | 40106 | 48726 | 457 | 130 | 3320 | 587 | 0.405 | 23363 | 23363 | 8205 | 100% | 172 | 150 | 13899 | 38.17 | 4876 | | Department of Energy | 14 | 85 | 8 | Yes | 31731 | 39986 | 392 | 170 | 2724 | 562 | 0.332 | 18171 | 18171 | 8205 | 100% | 172 | 150 | 8679 | 49.92 | 5006 | | Battery OEM | 14 | 85 | 8 | Yes | 29606 | 37009 | 334 | 170 | 2522 | 504 | 0.307 | 18171 | 18171 | 8205 | 100% | 172 | 150 | 8679 | 49.92 | 5006 | ## RESIDENTIAL TABLES - LOUISVILLE, KY | | | | | | | | Ba | se Case - Louis | ville Resid | ential (1009 | 6 Load Met | | | | | | | | | |---------|----|-------------|-----------|--------------------|-----------|------------------|-----------|-----------------|-------------|--------------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | | | Total Annual | Total O&M | Total Annual | Operating | <u> </u> | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Year | PV | 1kWh Li-ion | Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | 2014 | 20 | 220 | 9 | 151,922 | 190,348 | | 440 | 19,065 | | | | 27,180 | 12,837 | 100% | 13 | 11 | | | 7,722 | | 2016 | 20 | 220 | 9 | 127,631 | 163,876 | | 440 | 15,090 | 3,338 | | 27,180 | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | | 7,722 | | 2018 | 20 | 220 | 9 | 161,673 | 207,066 | | 440 | 14,545 | | | 27,180 | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | | 7,722 | | 2020 | 20 | 220 | 9 | 144,221 | 186,462 | | 440 | 12,705 | | | | | 12,837 | 100% | 13 | 11 | 12,340 | | 7,722 | | 2022 | 20 | 220 | 9 | 129,631 | 167,946 | | 440 | 11,443 | | 0.891 | 27,180 | | 12,837 | 100% | 13 | 11 | 12,340 | | | | 2024 | 20 | 220 | 9 | 117,278 | 152,082 | | 440 | 10,362 | | 0.807 | 27,180 | | 12,837 | 100% | 13 | 11 | 12,340 | | 7,722 | | 2026 | 20 | 220 | 9 | 107,743 | 139,526 | | 440 | 9,507 | 2,166 | | 27,180 | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | | 7,722 | | 2028 | 20 | 220 | 9 | 100,680 | 130,031 | | 440 | 8,860 | | | | 27,180 | 12,837 | 100% | | 11 | 12,340 | | 7,722 | | 2030 | 20 | 220 | 9 | 95,412 | 122,971 | 1,438 | 440 | 8,379 | | 0.653 | | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | | 7,722 | | 2032 | 20 | 220 | 9 | 93,384 | 120,290 | | 440 | 8,196 | | | , | | 12,837 | 100% | | 11 | 12,340 | | 7,722 | | 2034 | 20 | 220 | 9 | 92,071 | 118,530 | | 440 | 8,076 | | 0.629 | | 27,180 | 12,837 | 100% | | 11 | 12,340 | | 7,722 | | 2036 | 20 | 220 | 9 | 90,778 | 116,879 | | | 7,964 | | | 27,180 | 27,180 | 12,837 | 100% | 13 | 11 | | | | | 2038 | 20 | 220 | 9 | 89,792 | 115,578 | | 440 | 7,875 | | 0.613 | | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | | | | 2040 | 20 | 220 | 9 | 88,860 | 114,352 | | 440 | 7,791 | 1,737 | 0.607 | 27,180 | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | | | | 2042 | 20 | 220 | 9 | 87,782 | 112,922 | | 440 | 7,694 | | 0.599 | , | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | | | | 2044 | 20 | 220 | 9 |
86,821 | 111,656 | | 440 | 7,608 | | 0.593 | | 27,180 | 12,837 | 100% | | 11 | 12,340 | | | | 2046 | 20 | 220 | 9 | 85,882 | 110,420 | | 440 | 7,523 | | 0.586 | | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | | | | 2048 | 20 | 220 | 9 | 84,769 | 109,022 | | 440 | 7,428 | | 0.579 | | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | | | | 2050 | 20 | 220 | 9 | 84,076 | 108,051 | 1,194 | 440 | 7,362 | | 0.573 | | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | | | | Sunshot | 20 | 220 | 9 | 59,120 | 77,257 | 796 | 440 | 5,264 | 1,236 | 0.41 | 27,180 | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | 120.02 | 7,722 | | | | | | | | Accelerated Tech | nology Imp | rovement - | Louisville I | Resident | ial (100% Lo | oad Met) | | | | | | | | |------------------------------|----|-------------|-----------|---------------|-----------|------------------|------------|--------------|--------------|----------|--------------|------------------|-------------|----------|----------|--------|-------------|----------|-----------| | | | | | Total Capital | | | | Total Annual | | | | Total Electrical | | | Capacity | Unmet | Excess | Battery | Battery | | Battery Projection Study | PV | 1kWh Li-ion | Converter | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughpu | | | kW | | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 20 | 220 | 9 | 117,691 | 159,318 | 2,396 | 440 | 10,855 | 2,836 | 0.846 | 27,180 | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | 120.02 | 7,72 | | Deutsche Bank | 20 | 220 | 9 | 86,620 | 115,786 | 1,547 | 440 | 7,889 | 1,987 | 0.615 | 27,180 | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | 120.02 | 7,72 | | McKinsey | 20 | 220 | 9 | 75,620 | 100,375 | 1,247 | 440 | 6,839 | 1,687 | 0.533 | 27,180 | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | 120.02 | 7,72 | | Department of Energy | 20 | 220 | 9 | 59,120 | 77,257 | 796 | 440 | 5,264 | 1,236 | 0.41 | 27,180 | 27,180 | 12,837 | 100% | 13 | 13 | 12,340 | 120.02 | 7,72 | | Battery OEM | 20 | 220 | 9 | 53,620 | 69,551 | 645 | 440 | 4,739 | 1,085 | 0.369 | 27,180 | 27,180 | 12,837 | 100% | 13 | 11 | 12,340 | 120.02 | 7,72 | | | | | | | | | Demand-s | ide Improv | ement - Loui | sville Reside | ential (| 98% Load N | let) | | | | | | | | |---------|----|-------------|-----------|------------|--------------------|-----------|------------------|------------|--------------|---------------|----------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | Efficiency | | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Year | PV | 1kWh Li-ion | Converter | Case | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | 2014 | 17 | 7 60 | 6 | Yes | 73,577 | 85,584 | 1,083 | | | 1,203 | 0.97 | 23,103 | 23,103 | 8,836 | 1 | 182 | 157 | 12,938 | | 5,112 | | 2016 | 17 | 7 60 | 6 | Yes | 63,116 | 74,619 | 939 | | | | 0.778 | | | 8,836 | 1 | 182 | | | | 5,112 | | 2018 | 17 | | | Yes | 80,570 | 95,050 | | 120 | | | 0.756 | | | | 1 | 182 | | | | | | 2020 | 17 | | | Yes | 72,436 | 86,065 | | | | | 0.664 | | | | 1 | 182 | | | | | | 2022 | 17 | | | Yes | 65,580 | 78,096 | | | | | 0.602 | | | | 1 | 182 | | | | | | 2024 | 14 | | | Yes | 57,707 | 71,535 | | | | 942 | 0.552 | | | | 1 | 186 | | 8,838 | | | | 2026 | 14 | | - | Yes | 53,709 | | | 150 | , | | 0.513 | | -, | | 1 | 186 | _ | -, | | | | 2028 | 14 | | | Yes | 50,912 | 62,858 | | 150 | | | 0.485 | | | 8,832 | 1 | 186 | | 8,838 | | | | 2030 | 14 | | | Yes | 48,829 | 60,164 | | | | | 0.464 | | | | 1 | 186 | | 8,838 | | | | 2032 | 14 | | - | Yes | 47,965 | 59,066 | | | | | 0.456 | | | | 1 | 186 | | 8,838 | | | | 2034 | 14 | | - | Yes | 47,445 | 58,394 | | | | | 0.45 | | 19,026 | | 1 | 186 | | 8,838 | | | | 2036 | 14 | | | Yes | 46,861 | 57,687 | | | | | 0.445 | | | | 1 | 186 | | 8,838 | | | | 2038 | 14 | | - | Yes | 46,453 | 57,172 | | | | | 0.441 | | | | 1 | 186 | | 8,838 | | | | 2040 | 14 | | | Yes | 46,063 | 56,682 | | | -, | | 0.437 | | | | 1 | 186 | _ | 8,838 | | ., | | 2042 | 14 | | | Yes | 45,595 | 56,082 | | | | | 0.433 | | | | 1 | 186 | | | | | | 2044 | 14 | | | Yes | 45,195 | 55,579 | | 150 | | | 0.429 | | | | 1 | 186 | | | | | | 2046 | 14 | | | Yes | 44,803 | 55,085 | | 150 | | | 0.425 | | | | 1 | 186 | | | | | | 2048 | 14 | | | Yes | 44,280 | 54,465 | | | | | 0.42 | | | | 1 | 186 | | 8,838 | | | | 2050 | 14 | | | Yes | 44,044 | 54,134 | | 150 | | | 0.418 | | | | 1 | 186 | | 8,838 | | | | Sunshot | 14 | 75 | 6 | Yes | 31,567 | 39,573 | 395 | 150 | 2,696 | 545 | 0.305 | 19,026 | 19,026 | 8,832 | 1 | 186 | 161 | 8,838 | 40.92 | 5,235 | | | | | | | | | Combined Imp | | Lautautlla | امتدسمانمه | (000/ 1 4 | 34-41 | | | | | | | | | |------------------------------|----|-------------|-----------|-----------------|---------------|-----------|------------------|-----------|--------------|-------------|-----------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | | | | Combined imp | rovement | - Louisville | residentiai | (98% LOAG | iviet) | Total Capital | | Total Annual | Total O&M | Total | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Battery Projection Study | PV | 1kWh Li-ion | Converter | Efficiency Case | Cost | Total NPC | Replacement Cost | Cost | Annual Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 20 | 50 | 6 | Yes | 50754 | 62111 | 674 | 100 | 4232 | 774 | 0.479 | 27180 | 27180 | 8836 | 100% | 181 | 157 | 17036 | 27.28 | 5015 | | Deutsche Bank | 18 | 55 | 7 | Yes | 42122 | 51368 | 520 | 110 | 3500 | 630 | 0.396 | 24462 | 24462 | 8835 | 100% | 183 | 159 | 14307 | 30.01 | 5076 | | McKinsey | 17 | 60 | 6 | Yes | 38692 | 47310 | 467 | 120 | 3223 | 587 | 0.365 | 23103 | 23103 | 8836 | 100% | 182 | 157 | 12938 | 32.73 | 5112 | | Department of Energy | 14 | 75 | 6 | Yes | 31567 | 39573 | 395 | 150 | 2696 | 545 | 0.305 | 19026 | 19026 | 8832 | 100% | 186 | 161 | 8838 | 40.92 | | | Battery OEM | 13 | 80 | 8 | Yes | 29052 | 36798 | 368 | 160 | 2507 | 528 | 0.284 | 17667 | 17667 | 8831 | 100% | 188 | 162 | 7468 | 43.65 | 5285 | ## RESIDENTIAL TABLES - SAN ANTONIO, TX | | | | | | | | Base | Case - San An | tonio Resi | dential (100 |)% Load Me | et) | | | | | | | | |---------|------|-------------|-----------|--------------------|-----------|------------------|-----------|---------------|------------|--------------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Year | PV : | 1kWh Li-ion | Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | 2014 | 20 | 220 | 12 | 148,866 | 186,227 | 3,302 | 440 | 18,653 | | | | 31,030 | 15,247 | 100% | | 10 | 13,370 | | | | 2016 | 20 | 220 | 12 | 124,934 | 160,124 | | 440 | 14,745 | | | 31,030 | 31,030 | 15,247 | 100% | | 10 | 13,370 | | | | 2018 | 20 | 220 | 12 | 158,168 | 202,204 | 2,653 | 440 | 14,203 | 3,093 | 0.932 | 31,030 | 31,030 | 15,247 | 100% | | | 13,370 | | | | 2020 | 20 | 220 | 12 | 141,075 | 182,055 | | 440 | 12,404 | | 0.814 | | 31,030 | 15,247 | 100% | | | 13,370 | | | | 2022 | 20 | 220 | 12 | 126,755 | 163,917 | 2,092 | 440 | 11,168 | | 0.733 | | | 15,247 | 100% | | | 13,370 | | | | 2024 | 20 | 220 | 12 | 114,581 | 148,304 | | 440 | 10,105 | | | | | 15,247 | 100% | | | 13,370 | | | | 2026 | 20 | 220 | 12 | 105,136 | 135,874 | | 440 | 9,258 | | 0.607 | 31,030 | 31,030 | 15,247 | 100% | | 10 | 13,370 | | | | 2028 | 20 | 220 | 12 | 98,163 | 126,505 | 1,491 | 440 | 8,619 | | 0.565 | | 31,030 | 15,247 | 100% | | 10 | 13,370 | | 7 9,124 | | 2030 | 20 | 220 | 12 | 92,895 | 119,445 | | 440 | 8,138 | | 0.534 | 31,030 | 31,030 | 15,247 | 100% | | 10 | 13,370 | | 7 9,124 | | 2032 | 20 | 220 | 12 | 90,957 | 116,890 | 1,327 | 440 | 7,964 | | 0.522 | 31,030 | 31,030 | 15,247 | 100% | | 10 | 13,370 | | 7 9,124 | | 2034 | 20 | 220 | 12 | 89,644 | 115,130 | | 440 | 7,844 | | 0.515 | 31,030 | 31,030 | 15,247 | 100% | | 10 | 13,370 | | | | 2036 | 20 | 220 | 12 | 88,351 | 113,479 | | 440 | 7,732 | | 0.507 | 31,030 | 31,030 | 15,247 | 100% | | 10 | 13,370 | | | | 2038 | 20 | 220 | 12 | 87,365 | 112,178 | | 440 | 7,643 | | 0.501 | 31,030 | 31,030 | 15,247 | 100% | | 10 | 13,370 | | | | 2040 | 20 | 220 | 12 | 86,433 | 110,952 | 1,231 | 440 | 7,560 | 1,671 | 0.496 | 31,030 | 31,030 | 15,247 | 100% | 12 | 10 | 13,370 | 101.07 | 7 9,124 | | 2042 | 20 | 220 | 12 | 85,445 | 109,648 | 1,209 | 440 | 7,471 | 1,649 | 0.49 | 31,030 | 31,030 | 15,247 | 100% | 12 | 10 | 13,370 | 101.07 | 7 9,124 | | 2044 | 20 | 220 | 12 | 84,484 | 108,382 | 1,188 | 440 | 7,385 | 1,628 | 0.484 | 31,030 | 31,030 |
15,247 | 100% | | 10 | 13,370 | 101.07 | 7 9,124 | | 2046 | 20 | 220 | 12 | 83,545 | 107,146 | | 440 | 7,300 | | | 02,000 | 31,030 | 15,247 | 100% | | | 13,370 | | | | 2048 | 20 | 220 | 12 | 82,432 | 105,747 | 1,149 | 440 | 7,205 | | 0.473 | 31,030 | 31,030 | 15,247 | 100% | | 10 | 13,370 | 101.07 | 7 9,124 | | 2050 | 20 | 220 | 12 | 81,739 | 104,777 | 1,130 | 440 | 7,139 | 1,570 | 0.468 | 31,030 | 31,030 | 15,247 | 100% | 12 | 10 | 13,370 | 101.07 | 7 9,124 | | Sunshot | 20 | 220 | 12 | 57,502 | 74,990 | 752 | 440 | 5,109 | 1,192 | 0.335 | 31,030 | 31,030 | 15,247 | 100% | 12 | 10 | 13,370 | 101.07 | 7 9,124 | | | | | | | А | ccelerated Techn | ology Impr | ovement - Sa | n Antonio | Resider | ntial (100% | Load Met) | | | | | | | | |------------------------------|----|-------------|----|---------------|-----------|------------------|------------|---------------|-----------|---------------|-------------|------------------|-----------------------|------|--------------------|-------|-----------------------|----------|---------------------| | | | | I | Total Capital | | | | Total Annual | | | | Total Electrical | , | | | Unmet | Excess | Battery | Battery | | Battery Projection Study | kW | 1kWh Li-ion | kW | ¢ Cost | Total NPC | Replacement Cost | | Cost
\$/yr | | COE
\$/kWh | | | Load Served
kWh/vr | | Shortage
kWh/vr | | Electricity
kWh/vr | Autonomy | Throughpu
kWh/yr | | Bloomberg New Energy Finance | 20 | | | 116,073 | 157,052 | 2,352 | 440 | 10,701 | 2,792 | 0.702 | 31,030 | | 15,247 | | 12 | 10 | 13,370 | 101.07 | | | Deutsche Bank | 20 | 220 | 12 | 85,002 | 113,520 | 1,503 | 440 | 7,735 | 1,943 | 0.507 | 31,030 | 31,030 | 15,247 | 100% | 12 | 10 | 13,370 | 101.07 | 9,12 | | McKinsey | 20 | 220 | 12 | 74,002 | 98,108 | 1,202 | 440 | 6,685 | 1,642 | 0.438 | 31,030 | 31,030 | 15,247 | 100% | 12 | 10 | 13,370 | 101.07 | 9,12 | | Department of Energy | 20 | 220 | 12 | 57,502 | 74,990 | 752 | 440 | 5,109 | 1,192 | 0.335 | 31,030 | 31,030 | 15,247 | 100% | 12 | 10 | 13,370 | 101.07 | 9,12 | | Battery OEM | 20 | | 12 | 52,002 | 67,284 | 601 | 440 | 4,584 | 1,041 | 0.301 | 31,030 | 31,030 | 15,247 | 100% | 12 | 10 | 13,370 | 101.07 | 9,12 | | | | | | | | | Demand-sid | le Improvei | nent - San A | ntonio Resi | dential | (98% Load | Met) | | | | | | | | |--------------|----|-------------|-----------|------------|--------------------|-----------|------------------|-------------|--------------|-------------|---------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | Efficiency | | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Year | PV | 1kWh Li-ion | Converter | Case | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | 2014 | 18 | 60 | 7 | Yes | 74,231 | 85,735 | 1,032 | | | 1,152 | 0.819 | 27,927 | 27,927 | 10,488 | 1 | 218 | 192 | 15,837 | 27.57 | 6,026 | | 2016 | 18 | 60 | | Yes | 63,689 | 74,714 | | | | | 0.656 | | | 10,488 | | 218 | | | | | | 2018 | 18 | 60 | | Yes | 81,284 | 95,152 | | | | | 0.637 | | | 10,488 | | 218 | | | | | | 2020 | 18 | 60 | | Yes | 73,110 | 86,199 | | | | | 0.56 | | | 10,488 | 1 | 218 | | | | | | 2022 | 18 | 60 | | Yes | 66,193 | 78,242 | | 120 | | | 0.508 | | | 10,488 | 1 | 218 | | | | | | 2024 | 14 | | | Yes | 57,475 | 71,651 | | | | | 0.465 | | | 10,495 | 1 | 214 | | | | | | 2026 | 14 | 80 | | Yes | 53,368 | 66,458 | | | | | 0.431 | | | 10,495 | 1 | 214 | | | | | | 2028 | 14 | 80 | | Yes | 50,496 | | | | | | 0.407 | | | 10,495 | 1 | 214 | | | | | | 2030 | 14 | 80 | | Yes | 48,311 | 59,878 | | | | | 0.389 | | | 10,495 | 1 | 214 | | | | | | 2032 | 14 | 80 | | Yes | 47,471 | 58,815 | | | | | 0.382 | | | 10,495 | 1 | 214 | | | | | | 2034 | 14 | 80 | | Yes | 46,927 | 58,108 | | | | | 0.377 | | | 10,495 | 1 | 214 | | | | | | 2036 | 14 | 80 | | Yes | 46,322 | 57,373 | | | | | 0.372 | | | 10,495 | 1 | 214 | | -, | | | | 2038 | 14 | 80 | | Yes | 45,896 | | | | | | 0.369 | | | 10,495 | 1 | 214 | | | | | | 2040 | 14 | 80 | | Yes | 45,490 | 56,319 | | | | | 0.366 | | | 10,495 | 1 | 214 | | | | | | 2042 | 14 | 80 | | Yes | 45,063 | 55,778 | | | | | 0.362 | | | 10,495 | 1 | 214 | | | | | | 2044 | 14 | 80 | | Yes | 44,647 | 55,250 | | | | | 0.359 | | | 10,495 | 1 | 214 | | | | | | 2046 | 14 | 80 | | Yes | 44,238 | | | | | | 0.355 | | | 10,495 | 1 | 214 | | | | | | 2048
2050 | 14 | 80 | | Yes | 43,699 | | | | | | 0.351 | | | 10,495 | 1 | 214 | | | | | | | 14 | | | Yes | 43,447 | 53,737 | | 160 | -, | _ | 0.349 | | | 10,495 | 1 | 214 | _ | | | -, - | | Sunshot | 14 | 80 | 8 | Yes | 31,135 | 39,407 | 404 | 160 | 2,685 | 564 | 0.256 | 21,721 | 21,721 | 10,495 | 1 | 214 | 185 | 9,590 | 36.75 | 6,190 | | | | | | | | | Combined Impr | ovement - S | San Antonio | Residentia | l (98% Load | l Met) | | | | | | | | | |------------------------------|----|-------------|-----------|-----------------|---------------|-----------|------------------|-------------|-------------|------------|-------------|------------|------------|-------------|----------|----------|--------|-------------|----------|------------| | | | | | | Total Capital | | | Total O&M | | Operating | | | | AC Primary | | Capacity | Unmet | Excess | Battery | Battery | | Battery Projection Study | PV | 1kWh Li-ion | Converter | Efficiency Case | Cost | Total NPC | Replacement Cost | Cost | Annual Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 18 | 60 | 7 | Yes | 50608 | 63698 | 772 | 120 | 4340 | 892 | 0.414 | 27927 | 27927 | 10488 | 100% | 218 | 192 | 15837 | 27.57 | 6026 | | Deutsche Bank | 18 | 60 | 7 | Yes | 42135 | 51825 | 540 | 120 | 3531 | 660 | 0.337 | 27927 | 27927 | 10488 | 100% | 218 | 192 | 15837 | 27.57 | 6026 | | McKinsey | 18 | 60 | 7 | Yes | 39135 | 47622 | 458 | 120 | 3245 | 578 | 0.309 | 27927 | 27927 | 10488 | 100% | 218 | 192 | 15837 | 27.57 | 6026 | | Department of Energy | 14 | 80 | 8 | Yes | 31135 | 39407 | 404 | 160 | 2685 | 564 | 0.256 | 21721 | 21721 | 10495 | 100% | 214 | 185 | 9590 | 36.75 | 6190 | | Battery OEM | 14 | 80 | 8 | Yes | 29135 | 36605 | 349 | 160 | 2494 | 509 | 0.238 | 21721 | 21721 | 10495 | 100% | 214 | 185 | 9590 | 36.75 | 6190 | ## RESIDENTIAL TABLES - LOS ANGELES, CA 5 | | | | | | | | Bas | e Case - Los An | geles Resi | dential (100 | % Load Me | et) | | | | | | | | |---------|----|-------------|-----------|--------------------|-----------|------------------|-----------|-----------------|------------|--------------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Year | PV | 1kWh Li-ion | Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | \$ | | | \$/yr | | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | 2014 | 10 | 65 | 5 | 54,907 | 65,945 | 976 | 130 | | 1,106 | 0.835 | 16,057 | 16,057 | 7,914 | 100% | 8 | 7 | 6,840 | | | | 2016 | 10 | 65 | 5 | 46,526 | 56,924 | 827 | 130 | | 957 | 0.662 | 16,057 | 16,057 | 7,914 | 100% | | 7 | 6,840 | | | | 2018 | 10 | 65 | 5 | 59,128 | 72,138 | 784 | 130 | | 914 | 0.64 | 16,057 | 16,057 | 7,914 | 100% | 8 | 7 | 6,840 | | | | 2020 | | 65 | 5 | 52,932 | 65,040 | 695 | 130 | | 825 | 0.56 | | 16,057 | 7,914 | 100% | | 7 | 6,840 | | | | 2022 | 10 | 65 | 5 | 47,719 | 58,699 | 618 | 130 | | 748 | 0.505 | 16,057 | 16,057 | 7,914 | 100% | 8 | 7 | 6,840 | | | | 2024 | 10 | 65 | 5 | 43,386 | 53,350 | 549 | 130 | | 679 | 0.459 | | | 7,914 | 100% | | 7 | 6,840 | | | | 2026 | 10 | 65 | 5 | 40,186 | 49,268 | 489 | 130 | | 619 | 0.424 | 16,057 | 16,057 | 7,914 | 100% | | 7 | 6,840 | | | | 2028 | 10 | 65 | 5 | 37,921 | 46,295 | 441 | 130 | | 571 | 0.399 | | | 7,914 | 100% | | 7 | 6,840 | | | | 2030 | 10 | 65 | 5 | 36,201 | 44,046 | 404 | 130 | | 534 | | | 16,057 | 7,914 | 100% | 8 | 7 | 6,840 | | | | 2032 | 10 | 65 | 5 | 35,547 | 43,209 | 392 | 130 | | 522 | | | 16,057 | 7,914 | 100% | | 7 | 6,840 | | | | 2034 | 10 | 65 | 5 | 35,118 | 42,648 | 383 | 130 | | 513 | | | | 7,914 | 100% | | 7 | 6,840 | | | | 2036 | 10 | 65 | 5 | 34,654 | 42,078 | 376 | 130 | | 506 | | | | 7,914 | 100% | | 7 | 6,840 | | | | 2038 | - | 65 | 5 | 34,322 | 41,653 | 370 | 130 | | 500 | 0.359 | | | 7,914 | 100% | | 7 | 6,840 | | | | 2040 | | 65 | 5 | 34,006 | 41,250 | 364 | 130 | | 494 | 0.355 | | | 7,914 | 100% | | 7 | 6,840 | | | | 2042 | | 65 | 5 | 33,673 | 40,824 | 357 | 130 | | 487 | 0.351 | 16,057 | | 7,914 | 100% | | 7 | 6,840 | | | | 2044 | | 65 | 5 | 33,348 | 40,409 | 351 | | 2,753 | 481 | 0.348 | | | 7,914 | 100% | | 7 | 6,840 | | | | 2046 | 10 | 65 | 5 | 33,030 | 40,003 | 345 | 130 | | 475 | | -, | | 7,914 | 100% | | 7 | 6,840 | | | | 2048 | | 65 | 5 | 32,619 | 39,508 | 339 | 130 | | 469 | 0.34 | 16,057 | | 7,914 | 100% | | 7 | 6,840 | | | | 2050 | | 65 | 5 | 32,414 | 39,221 | 334 | 130 | | 464 | | | | 7,914 | 100% | | 7 | 6,840 | | | | Sunshot | 10 | 65 | 5 | 23,126 | 28,293 | 222 | 130 | 1,928 | 352 | 0.244 | 16,057 | 16,057 | 7,914 | 100% | 8 | 7 | 6,840 | 57.52 | 4,922 | | | | | | | Α | ccelerated Techi | nology Impi | rovement - L | os
Angeles | Reside | ntial (100% | Load Met) | | | | | | | | |------------------------------|----|-------------|-----------|---------------|-----------|------------------|-------------|--------------|------------|--------|-------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| Total Capital | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Battery Projection Study | PV | 1kWh Li-ion | Converter | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 10 | 65 | 5 | 40,431 | 52,538 | 695 | 130 | 3,580 | 825 | 0.452 | 16,057 | 16,057 | 7,914 | 100% | 8 | 7 | 6,840 | 57.52 | 4,922 | | Deutsche Bank | 10 | 65 | 5 | 31,251 | 39,677 | 444 | 130 | 2,703 | 574 | 0.342 | 16,057 | 16,057 | 7,914 | 100% | 8 | 7 | 6,840 | 57.52 | 4,922 | | McKinsey | 10 | 65 | 5 | 28,001 | 35,123 | 355 | 130 | 2,393 | 485 | 0.302 | 16,057 | 16,057 | 7,914 | 100% | 8 | | 6,840 | 57.52 | 4,922 | | Department of Energy | 10 | 65 | 5 | 23,126 | 28,293 | 222 | 130 | 1,928 | 352 | 0.244 | 16,057 | 16,057 | 7,914 | 100% | 8 | | 6,840 | 57.52 | 4,922 | | Battery OEM | 10 | 65 | 5 | 21,501 | 26,016 | 178 | 130 | 1,773 | 308 | 0.224 | 16,057 | 16,057 | 7,914 | 100% | 8 | 7 | 6,840 | 57.52 | 4,922 | | | | | | | | | Demand-sid | de Improve | ment - Los A | ngeles Resid | lential | (98% Load I | Met) | | | | | | | | |---------|----|-------------|-----------|------------|--------------------|-----------|------------------|------------|--------------|--------------|---------|-------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | Efficiency | | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Year | PV | 1kWh Li-ion | Converter | Case | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | 2014 | 7 | 25 | 3 | Yes | 29,608 | 34,537 | 444 | 50 | 3,459 | 494 | 0.635 | 11,240 | 11,240 | 5,447 | 1 | 111 | 97 | 4,909 | 22.12 | 3,342 | | 2016 | 7 | 25 | 3 | Yes | 25,376 | 30,117 | 387 | 50 | 2,773 | 437 | 0.509 | 11,240 | 11,240 | 5,447 | 1 | 111 | 97 | 4,909 | 22.12 | 3,342 | | 2018 | 7 | 25 | 3 | Yes | 32,367 | 38,337 | 369 | 50 | 2,693 | 419 | 0.494 | 11,240 | 11,240 | 5,447 | 1 | 111 | 97 | | 22.12 | 3,342 | | 2020 | 7 | 25 | 3 | Yes | 29,101 | 34,753 | 335 | | | | 0.435 | 11,240 | 11,240 | 5,447 | 1 | 111 | . 97 | | 22.12 | 3,342 | | 2022 | 7 | 25 | | Yes | 26,339 | 31,557 | | 50 | | | 0.395 | | | | 1 | 111 | 97 | | | | | 2024 | 6 | 30 | | Yes | 23,320 | 28,914 | | 60 | | | 0.362 | | | | 1 | 115 | | | | | | 2026 | | 30 | | Yes | 21,705 | | | 60 | | | 0.337 | | -, | | 1 | 115 | | -, | | | | 2028 | 6 | 30 | | Yes | 20,590 | 25,450 | | 60 | | | 0.319 | | | | 1 | 115 | | | | | | 2030 | 6 | 30 | | Yes | 19,741 | | | 60 | | | 0.305 | | 9,634 | | 1 | 115 | | | | | | 2032 | 6 | 30 | | Yes | 19,411 | | | 60 | | | | | 9,634 | | 1 | 115 | _ | | | | | 2034 | 6 | 30 | | Yes | 19,200 | 23,670 | | 60 | | | 0.296 | | 9,634 | | 1 | 115 | | | | | | 2036 | | 30 | | Yes | 18,958 | 23,379 | | 60 | | | 0.293 | | 9,634 | | 1 | 115 | | | | | | 2038 | 6 | 30 | | Yes | 18,791 | 23,169 | | 60 | | | 0.29 | | 9,634 | | 1 | 115 | | | | | | 2040 | 6 | 30 | | Yes | 18,631 | 22,969 | | 60 | | | 0.287 | | 9,634 | 5,444 | 1 | 115 | _ | | | | | 2042 | 6 | 30 | | Yes | 18,463 | 22,759 | | | | | 0.285 | | 9,634 | | 1 | 115 | | | | | | 2044 | 6 | 30 | | Yes | 18,300 | 22,553 | | 60 | | | 0.282 | | 9,634 | | 1 | 115 | | | | | | 2046 | | 30 | | Yes | 18,139 | 22,352 | | 60 | | | 0.28 | | | | 1 | 115 | | | | | | 2048 | 6 | 30 | | Yes | 17,922 | 22,096 | | 60 | | | 0.277 | | | | 1 | 115 | | | | | | 2050 | 6 | 30 | | Yes | 17,827 | 21,963 | | | | | 0.275 | | 9,634 | | 1 | 115 | | | | | | Sunshot | 6 | 30 |) 4 | Yes | 12,820 | 16,200 | 170 | 60 | 1,104 | 230 | 0.203 | 9,634 | 9,634 | 5,444 | 1 | 115 | 100 | 3,298 | 26.55 | 3,389 | | | | | | | | | Combined Imp | rovement - | Los Angeles | Residentia | ii (98% Load | (Met) | | | | | | | | | |------------------------------|----|-------------|-----------|-----------------|---------------|-----------|------------------|------------|-------------|------------|--------------|------------|------------|-------------|-----------|----------|--------|--------|----------|------------| Total Capital | | | | | Operating | | | | | Renewable | | | Excess | Battery | Battery | | Battery Projection Study | PV | 1kWh Li-ion | Converter | Efficiency Case | Cost | Total NPC | Replacement Cost | Cost | Annual Cost | Cost | COE | Production | Production | Load Served | | Shortage | | | Autonomy | Throughput | | | kW | | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 7 | 25 | 3 | Yes | 20351 | 26002 | 335 | 50 | 1772 | 385 | 0.325 | 11240 | 11240 | 5447 | 100% | 111 | 97 | 4909 | 22.12 | 3342 | | Deutsche Bank | 7 | 25 | 3 | Yes | 16820 | 21055 | 239 | 50 | 1435 | 289 | 0.263 | 11240 | 11240 | 5447 | 100% | 111 | 97 | 4909 | 22.12 | 3342 | | McKinsey | 7 | 25 | 3 | Yes | 15570 | 19304 | 204 | 50 | 1315 | 254 | 0.241 | 11240 | 11240 | 5447 | 100% | 111 | 97 | 4909 | 22.12 | 3342 | | Department of Energy | 6 | 30 | 4 | Yes | 12820 | 16199 | 170 | 60 | 1104 | 230 | 0.203 | 9634 | 9634 | 5444 | 100% | 115 | 100 | 3298 | 26.55 | 3389 | | Battery OEM | 6 | 30 | 4 | Yes | 12070 | 15149 | 150 | 60 | 1032 | 210 | 0.19 | 9634 | 9634 | 5444 | 100% | 115 | 100 | 3298 | 26.55 | 3389 | #### **RESIDENTIAL TABLES - HONOLULU** | | | | | | | Ba | se Case - Hono | lulu Resid | ential (1009 | 6 Load Met |) | | | | | | | | |---------|------|-----------------------|--------------------|-----------|------------------|-----------|----------------|------------|--------------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Year | PV : | 1kWh Li-ion Converter | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | 2014 | 20 | 95 | 97,002 | 113,964 | | 190 | 11,415 | | | | 31,952 | 14,481 | 100% | | 10 | 15,318 | | | | 2016 | 20 | 95 | 82,752 | 98,769 | | 190 | 9,095 | 1,475 | | | 31,952 | 14,481 | 100% | | 10 | 15,318 | | | | 2018 | 20 | 95 | 105,460 | 125,531 | 1,220 | 190 | 8,818 | | | | 31,952 | 14,481 | 100% | | 10 | 15,318 | | | | 2020 | 20 | 95 | 94,617 | 113,295 | | 190 | 7,719 | | 0.533 | | | 14,481 | 100% | | 10 | 15,318 | | | | 2022 | 20 | 95 | 85,496 | 102,441 | 965 | 190 | 6,980 | | 0.482 | | | | 100% | | 10 | 15,318 | | | | 2024 | 20 | 95 | 78,054 | 93,458 | | 190 | 6,368 | | | | | | 100% | | 10 | 15,318 | | | | 2026 | 20 | 95 | 72,769 | 86,856 | | 190 | 5,918 | | | - , | | 14,481 | 100% | | _ | 15,318 | | | | 2028 | 20 | 95 | 69,120 | 82,144 | | 190 | 5,597 | 887 | 0.387 | 31,952 | 31,952 | 14,481 | 100% | | 10 | 15,318 | | | | 2030 | 18 | 105 | 64,947 | 78,629 | | 210 | 5,357 | 932 | 0.37 | | | 14,479 | 100% | | 11 | 12,107 | 50.79 | | | 2032 | 18 | 105 | 63,763 | 77,114 | | 210 | 5,254 | | 0.363 | 28,756 | 28,756 | 14,479 | 100% | | 11 | 12,107 | | | | 2034 | 18 | 105 | 63,052 | 76,190 | | 210 | 5,191 | 895 | 0.359 | | | | 100% | | | 12,107 | 50.79 | | | 2036 | 18 | 105 | 62,266 | 75,233 | | 210 | 5,126 | | 0.354 | | | | 100% | | _ | 12,107 | 50.79 | | | 2038 | 18 | 105 | 61,711 | 74,528 | | 210 | 5,078 | | | 28,756 | | | 100% | | _ | 12,107 | 50.79 | | | 2040 | 18 | 105 | 61,181 | 73,858 | 654 | 210 | 5,032 | | 0.348 | 28,756 | 28,756 | 14,479 | 100% | 13 | 11 | 12,107 | 50.79 | 9 8,154 | | 2042 | 18 | 105 | 60,536 | 73,025 | 641 | 210 | 4,976 | | 0.344 | 28,756 | 28,756 | 14,479 | 100% | 13 | 11 | 12,107 | 50.79 | 9 8,154 | | 2044 | 18 | 105 | 59,992 | 72,336 | 631 | 210 | 4,929 | | 0.34 | 28,756 | 28,756 | 14,479 | 100% | | 11 | 12,107 | 50.79 | 9 8,154 | | 2046 | 18 | 105 | 59,459 | 71,662 | | 210 | 4,883 | | 0.337 | | | | 100% | | | 12,107 | | | | 2048 | 18 | 105 | 58,759 | 70,825 | 612 | 210 | 4,826 | | 0.333 | 28,756 | 28,756 | 14,479 | 100% | | 11 | 12,107 | 50.79 | 9 8,154 | | 2050 | 18 | 105 | 58,428 | 70,362 | 603 | 210 | 4,794 | 813 | 0.331 | 28,756 | 28,756 | 14,479 | 100% | 13 | 11 | 12,107 | 50.79 | 9 8,154 | | Sunshot | 18 | 105 | 41,745 | 50,741 | 403 | 210 | 3,457 | 613 | 0.239 | 28,756 | 28,756 | 14,479 | 100% | 13 | 11 | 12,107 | 50.79 | 8,154 | | | | | | | | Accelerated Tech | nology Im | provement - | Honolulu I | Resident | tial (100% L | oad Met) | | | | | | | | |------------------------------|----|-------------|-----------|---------------|-----------|------------------|-----------|--------------|------------|----------|--------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | | | | |
| | | | | | | | | | | | | | | | | Total Capital | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Battery Projection Study | PV | 1kWh Li-ion | Converter | Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 20 | 95 | 7 | 68,427 | 86,627 | 1,050 | 190 | 5,902 | 1,240 | 0.408 | 31,952 | 31,952 | 14,481 | 100% | 11 | 10 | 15,318 | 45.95 | 8,069 | | Deutsche Bank | 20 | 95 | 7 | 55,010 | 67,829 | 683 | 190 | 4,622 | 873 | 0.319 | 31,952 | 31,952 | 14,481 | 100% | 11 | 10 | 15,318 | 45.95 | 8,069 | | McKinsey | 20 | 95 | 7 | 50,260 | 61,174 | 554 | 190 | 4,168 | 744 | 0.288 | 31,952 | 31,952 | 14,481 | 100% | 11 | 10 | 15,318 | 45.95 | 8,069 | | Department of Energy | 18 | 105 | 9 | 41,745 | 50,741 | 403 | 210 | 3,457 | 613 | 0.239 | 28,756 | 28,756 | 14,479 | 100% | 13 | 11 | 12,107 | 50.79 | 8,154 | | Battery OEM | 17 | 115 | 8 | 38,440 | 47,006 | 354 | 230 | 3,203 | 584 | 0.221 | 27,159 | 27,159 | 14,478 | 100% | 14 | 12 | 10,500 | 55.63 | 8,203 | | | | | | | | | Demand-s | ide Improv | ement - Hon | olulu Reside | ntial (| 98% Load M | let) | | | | | | | | |---------|----|-------------|-----------|------------|--------------------|-----------|------------------|------------|--------------|--------------|---------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | Efficiency | | | Total Annual | Total O&M | Total Annual | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Year | PV | 1kWh Li-ion | Converter | Case | Total Capital Cost | Total NPC | Replacement Cost | Cost | Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | 2014 | 13 | 35 | 4 | Yes | 51,384 | 59,048 | 698 | 70 | 5,914 | 768 | 0.594 | 20,769 | 20,769 | 9,962 | 100% | 209 | 181 | 9,343 | 16.93 | 5,497 | | 2016 | 13 | 35 | 4 | Yes | 44,275 | 51,697 | 613 | 70 | 4,760 | 683 | 0.478 | 20,769 | 20,769 | 9,962 | 100% | 209 | 181 | 9,343 | 16.93 | 5,497 | | 2018 | 13 | 35 | 4 | Yes | 56,598 | 65,970 | 588 | 70 | 4,634 | 658 | 0.465 | 20,769 | 20,769 | 9,962 | 100% | 209 | 181 | 9,343 | 16.93 | 5,497 | | 2020 | 13 | 35 | 4 | Yes | 50,970 | 59,866 | 536 | 70 | 4,079 | 606 | 0.409 | | 20,769 | 9,962 | 100% | 209 | | 9,343 | | 5,497 | | 2022 | 13 | 35 | 4 | Yes | 46,215 | 54,456 | | 70 | | | 0.372 | 20,769 | 20,769 | 9,962 | 100% | 209 | | 9,343 | 16.93 | 5,497 | | 2024 | 11 | | | Yes | 40,861 | 50,055 | | | | | 0.342 | | | | 100% | 211 | | 6,126 | | 5,601 | | 2026 | 11 | L 45 | 4 | Yes | 38,198 | 46,766 | 494 | 90 | 3,186 | 584 | 0.32 | 17,573 | 17,573 | 9,962 | 100% | 211 | 181 | 6,126 | 21.77 | 5,601 | | 2028 | 11 | L 45 | 4 | Yes | 36,386 | 44,448 | 459 | | | 549 | 0.304 | 17,573 | 17,573 | 9,962 | | 211 | 181 | 6,126 | | 5,601 | | 2030 | 11 | | | Yes | 35,033 | 42,727 | | | | | 0.292 | | | | 100% | 211 | | 6,126 | | 5,601 | | 2032 | 11 | | | Yes | 34,458 | 42,011 | | | | | 0.287 | | | | 100% | 211 | | 6,126 | | 5,601 | | 2034 | 11 | | | Yes | 34,120 | 41,581 | | | | | 0.284 | | | | 100% | 211 | | 6,126 | | 5,601 | | 2036 | 11 | | | Yes | 33,718 | 41,106 | | | | | 0.281 | | | | 100% | 211 | | | | 5,601 | | 2038 | 11 | | | Yes | 33,447 | 40,770 | | | | | 0.279 | | | | 100% | 211 | | 6,126 | | 5,601 | | 2040 | 11 | | | Yes | 33,187 | 40,450 | | 90 | | | 0.277 | | | | 100% | 211 | _ | 6,126 | | 5,601 | | 2042 | 11 | | | Yes | 32,876 | 40,059 | | | | | 0.274 | | | | 100% | 211 | | 6,126 | | 5,601 | | 2044 | 11 | | | Yes | 32,610 | 39,731 | | 90 | | | 0.272 | | | | 100% | 211 | | 6,126 | | 5,601 | | 2046 | 11 | | | Yes | 32,349 | 39,409 | | 90 | | | 0.27 | | | | 100% | 211 | | 6,126 | | 5,601 | | 2048 | 11 | | | Yes | 31,983 | 38,984 | | 90 | | | 0.267 | | | | 100% | 211 | | 6,126 | | 5,601 | | 2050 | 11 | | | Yes | 31,842 | 38,786 | | 90 | | | 0.265 | | | | 100% | 211 | | 6,126 | | 5,601 | | Sunshot | 11 | L 45 | 4 | Yes | 22,971 | 28,652 | 297 | 90 | 1,952 | 387 | 0.196 | 17,573 | 17,573 | 9,962 | 100% | 211 | 181 | 6,126 | 21.77 | 5,601 | | | | | | | | | Combined Imp | rovement | - Honolulu I | Residential | (98% Load I | Met) | | | | | | | | | |------------------------------|----|-------------|-----------|-----------------|---------------|-----------|------------------|-----------|--------------|-------------|-------------|------------|------------------|-------------|-----------|----------|--------|-------------|----------|------------| | | | | | | Total Capital | | Total Annual | Total O&M | Total | Operating | | PV | Total Electrical | AC Primary | Renewable | Capacity | Unmet | Excess | Battery | Battery | | Battery Projection Study | PV | 1kWh Li-ion | Converter | Efficiency Case | Cost | Total NPC | Replacement Cost | Cost | Annual Cost | Cost | COE | Production | Production | Load Served | Fraction | Shortage | Load | Electricity | Autonomy | Throughput | | | kW | | kW | | \$ | \$ | \$/yr | \$/yr | \$/yr | \$/yr | \$/kWh | kWh/yr | kWh/yr | kWh/yr | | kWh/yr | kWh/yr | kWh/yr | hr | kWh/yr | | Bloomberg New Energy Finance | 13 | 35 | 4 | Yes | 34040 | 42663 | 518 | 70 | 2907 | 588 | 0.292 | 20769 | 20769 | 9962 | 100% | 209 | 181 | 9343 | 16.93 | 5497 | | Deutsche Bank | 13 | 35 | 4 | Yes | 29096 | 35737 | 382 | 70 | 2435 | 452 | 0.244 | 20769 | 20769 | 9962 | 100% | 209 | 181 | 9343 | 16.93 | 5497 | | McKinsey | 13 | 35 | 4 | Yes | 27346 | 33285 | 335 | 70 | 2268 | 405 | 0.228 | 20769 | 20769 | 9962 | 100% | 209 | 181 | 9343 | 16.93 | 5497 | | Department of Energy | 11 | 45 | 4 | Yes | 22971 | 28652 | 297 | 90 | 1952 | 387 | 0.196 | 17573 | 17573 | 9962 | 100% | 211 | 181 | 6126 | 21.77 | 5601 | | Battery OEM | 9 | 60 | 5 | Yes | 20526 | 26870 | 312 | 120 | 1831 | 432 | 0.184 | 14378 | 14378 | 9963 | 100% | 211 | 180 | 2901 | 29.02 | 5749 | #### **RESIDENTIAL TABLES - ALL LOCATIONS** | | | Residential (| All Scenario a | and Geography) I | Financial Co | sts | | |---------|------------|----------------|----------------|------------------|--------------|------------------|----------| | | PV Capital | PV Replacement | Li-ion Battery | Li-ion Battery | Inverter | Inverter | Interest | | Year | Cost | Cost | Capital Cost | Replacement Cost | Capital Cost | Replacement Cost | Rate | | | \$/Wdc | \$/Wdc | \$/kWh | \$/kWh | \$ | \$ | % | | 2014 | 2.67 | 3.82 | 433.92 | 619.88 | 0.34 | 0.49 | 8.8 | | 2016 | 2.35 | 3.35 | 354.23 | 506.05 | 0.3 | 0.43 | 7.8 | | 2018 | 3.03 | 3.03 | 443.47 | 443.47 | 0.39 | 0.39 | 4.9 | | 2020 | 2.75 | 2.75 | 391.23 | 391.23 | 0.35 | 0.35 | 4.6 | | 2022 | 2.51 | 2.51 | 347.96 | 347.96 | 0.32 | 0.32 | 4.6 | | 2024 | 2.33 | 2.33 | 308.99 | 308.99 | 0.3 | 0.3 | 4.6 | | 2026 | 2.23 | 2.23 | 275.15 | 275.15 | 0.29 | 0.29 | 4.6 | | 2028 | 2.18 | 2.18 | 248 | 248 | 0.28 | 0.28 | 4.6 | | 2030 | 2.14 | 2.14 | 227.69 | 227.69 | 0.28 | 0.28 | 4.6 | | 2032 | 2.12 | 2.12 | 220.7 | 220.7 | 0.27 | 0.27 | 4.6 | | 2034 | 2.11 | 2.11 | 215.64 | 215.64 | 0.27 | 0.27 | 4.6 | | 2036 | 2.09 | 2.09 | 211.58 | 211.58 | 0.27 | 0.27 | 4.6 | | 2038 | 2.08 | 2.08 | 208.01 | 208.01 | 0.27 | 0.27 | 4.6 | | 2040 | 2.07 | 2.07 | 204.68 | 204.68 | 0.27 | 0.27 | 4.6 | | 2042 | 2.06 | 2.06 | 201.1 | 201.1 | 0.26 | 0.26 | 4.6 | | 2044 | 2.05 | 2.05 | 197.64 | 197.64 | 0.26 | 0.26 | 4.6 | | 2046 | 2.04 | 2.04 | 194.28 | 194.28 | 0.26 | 0.26 | 4.6 | | 2048 | 2.02 | 2.02 | 191.04 | 191.04 | 0.26 | 0.26 | 4.6 | | 2050 | 2.02 | 2.02 | 187.89 | 187.89 | 0.26 | 0.26 | 4.6 | | Sunshot | 1.5 | 1.5 | 125 | 125 | 0.18 | 0.18 | 4.6 | | Residential (Accelerated | d Technolog | y and Combine | ed Improvem | ent Scenario) All | Geography | Financial Costs | |------------------------------|-------------|----------------|----------------|-------------------|--------------|----------------------| | | PV Capital | PV Replacement | Li-ion Battery | Li-ion Battery | Inverter | Inverter Replacement | | Battery Projection Study | Cost | Cost | Capital Cost | Replacement Cost | Capital Cost | Cost | | | \$/Wdc | \$/Wdc | \$/kWh | \$/kWh | \$ | \$ | | Bloomberg New Energy Finance | 1.5 | 1.5 | 391.23 | 391.23 | 0.18 | 0.18 | | Deutsche Bank | 1.5 | 1.5 | 250 | 250 | 0.18 | 0.18 | | McKinsey | 1.5 | 1.5 | 200 | 200 | 0.18 | 0.18 | | Department of Energy | 1.5 | 1.5 | 125 | 125 | 0.18 | 0.18 | | Battery OEM | 1.5 | 1.5 | 100 | 100 | 0.18 | 0.18 | ## **ENDNOTES** ¹Disruptive Challenges: Financial Implications and Strategic Responses to a Changing Retail Electricity Business. Edison Electric Institute. January 2013. <http://www.eei.org/ourissues/finance/Documents/disruptivechallenges.pdf> ² "U.S. Solar Market Insight 2012 Year in Review." GTM Research and the Solar Energy Industries Association. 2013. <>> ³ Barbose, Galen, Naïm Darghouth, and Ryan Wiser. Tracking the Sun V: An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2011. Lawrence Berkeley National Laboratory. November 2012. <http://emp.lbl.gov/sites/all/files/lbnl-5919e.pdf> ⁴ Chase, Jenny. "H2 2012 PV Inverter Market Update." Bloomberg New Energy Finance. December 17, 2012. Walker, Glen. "Research Note – PV Inverter Technology." Bloomberg New Energy Finance. May 20, 2010. ⁵ Chase, Jenny, Ranmali De
Silva, and Michael Wilshire. "Solar Inverter Market Update." Bloomberg New Energy Finance. October 8, 2013. ⁶ Smith, Rebecca. "Assault on California Power Station Raises Alarm on Potential for Terrorism: April Sniper Attack Knocked Out Substation, Raises Concern for Country's Power Grid." Wall Street Journal. Last updated February 18, 2014. Accessed February 18, 2014. <<ht>http://online.wsj.com/news/articles/SB10001424 052702304851104579359141941621778>> ⁷ Pentland, William. "FBI, Joint Terrorism Task Force Arrest Suspect in Arkansas Power Grid Attacks." *Forbes.* October 14, 2013. Accessed October 28, 2013. <http://www.forbes.com/sites/williampentland/2013/10/14/fbi-joint-terrorism-task-force-arrest-suspect-in-arkansas-power-grid-attacks>>> ⁸ Solar Storm Risk to the North American Electric Grid. Lloyd's. 2013. <http://www.lloyds.com/"/media/ Lloyds/Reports/Emerging%20Risk%20Reports/ Solar%20Storm%20Risk%20to%20the%20North%20 American%20Electric%20Grid.pdf>> ⁹ "Electricity Reliability: Problems, Progress, and Policy Solutions." Galvin Electricity Initiative. 2011. <http://www.galvinpower.org/sites/default/files/Electricity_ Reliability_031611.pdf>> ¹⁰ Baltimore, Chris. "Texas weathers rolling blackouts as mercury drops." *Reuters*. February 2, 2011. Accessed November 8, 2013. <http://www.reuters.com/article/2011/02/02/us-ercot-rollingblackots-idUSTRE7116ZH20110202> Gonzalez, Angel. "Utilities Scramble to Restore Power." *Wall Street Journal.* August 29, 2011. Accessed November 8, 2013. <http://online.wsj.com/news/articles/SB10001424053111903352704576536770913696248>> Jacobs, Mike. "13 of the Largest Power Outages in History—and What They Tell Us About the 2003 Northeast Blackout." *The Equation*, Union of Concerned Scientists. August 8, 2013. Accessed November 8, 2013. <http://blog.ucsusa.org/2003-northeast-blackout-and-13-of-the-largest-power-outages-in-history-199>>> "Power restored to parts of Florida after outage." CNN. February 27, 2008. Accessed November 8, 2013. <http://www.cnn.com/2008/US/02/26/florida.power/index.html> Waple, Anne. "Hurricane Katrina." NOAA National Climatic Data Center. December 2005. <<http:// www.ncdc.noaa.gov/extremeevents/specialreports/ Hurricane-Katrina.pdf>> - ¹² Trends in Photovoltaic Applications: Survey Report of Selected IEA Countries between 1992 and 2011. International Energy Agency. 2012. - 13 "Solar Means Business 2013: Top U.S. Commercial Solar Users." Solar Energy Industries Association. Accessed October 15, 2013. <http://www.seia.org/research-resources/solar-means-business-2013-top-us-commercial-solar-users>> - ¹⁴ Power Forward: Why the World's Largest Corporations Are Investing in Renewable Energy. WWF, Ceres, and Calvert Investments. 2012. <http://www.ceres.org/resources/reports/power-forward-why-the-world2019s-largest-companies-are-investing-in-renewable-energy> - ¹⁵ "Solar Means Business 2013: Top U.S. Commercial Solar Users." Solar Energy Industries Association. Accessed October 15, 2013. <http://www.seia.org/research-resources/solar-means-business-2013-top-us-commercial-solar-users>>> - ¹⁶ "Infographic: 9 Surprising Things About People Who Go Solar." One Block Off the Grid. March 27, 2012. Accessed February 19, 2014. <http://lbog.org/blog/infographic-9-surprising-things-about-people-who-go-solar>> - ¹⁷ Solar Survey: A collaboration between the City of San Diego and the California Center for Sustainable Energy funded through the U.S. Department of Energy's Solar America Cities Partnership. City of San Diego. March 2009. <http://www.sandiego.gov/environmental-services/sustainable/pdf/090925SOLARCITYSURVEYREPORT.pdf> - 18 "State, Territory, and Country Profiles and Energy Estimates." U.S. Energy Information Administration. 2013. Accessed 20 January 2014. <http://www.eia.gov/countries> - "Weekly Retail Gasoline and Diesel Prices." U.S. Energy Information Administration. <http://www.eia.gov/dnav/pet/PET_PRI_GND_A_EPD2D_PTE_DPGAL A.htm>> - ²⁰ International Energy Outlook 2013. U.S. Energy Information Administration. July 2013. DOE/EIA-0484(2013). <http://www.eia.gov/forecasts/ieo/pdf/0484(2013).pdf> - ²¹ International Energy Outlook 2011. U.S. Energy Information Administration. September 2011. DOE/EIA-0484(2011). <http://www.eia.gov/forecasts/archive/ieo11/pdf/0484(2011).pdf - ²² Diesel Generator Sets: Distributed Reciprocating Engines for Portable, Standby, Prime, Continuous, and Cogeneration Applications. Navigant Research. 2013. <http://www.navigantresearch.com/research/diesel-generator-sets> - ²³ Monte de Ramos, Kevin. "Industry Amidst Change." *Intelligent Utility.* December 3, 2013. Accessed February 19, 2014. <>> - ²⁴ The New Energy Consumer Handbook: A Survival Guide to the Evolving Energy Marketplace. Accenture. June 2013. <http://www.accenture.com/us-en/Pages/insight-new-energy-consumer-handbook.aspx> - ²⁵ Chediak, Mark, Christopher Martin, and Ken Wells. "Utilities Feeling Rooftop Solar Heat Start Fighting Back." *Bloomberg*. December 25, 2013. Accessed February 19, 2014. <> - ²⁶ Schwartz, John. "Fissures in G.O.P. as Some Conservatives Embrace Renewable Energy." *New York Times*. January 25, 2014. Accessed January 28. 2014. <http://www.nytimes.com/2014/01/26/us/politics/ fissures-in-gop-as-some-conservatives-embrace-renewable-energy.html>> - ²⁷ Goossens, Ehren, and Mark Chediak. "Battery-Stored Solar Power Sparks Backlash From Utilities." Bloomberg. October 8, 2013. Accessed February 19, 2014. <<http://www.bloomberg.com/news/2013-10-07/ battery-stored-solar-power-sparks-backlash-fromutilities.html>> - ²⁸ St. John, Jeff. "Fight Over Battery-Backed Solar in Southern California." *Greentech Media*. September 23, 2013. Accessed February 19, 2014. <<http://www.greentechmedia.com/articles/read/fight-over-battery-backed-solar-in-southern-california>> - ²⁹ "Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States." Open El, Developed at the National Renewable Energy Laboratory and made available under ODC-BY 1.0 Attribution License. 2013. <http://en.openei.org/datasets/node/961> - ³⁰ Annual Energy Outlook 2014 Early Release. U.S. Energy Information Administration. December 2013. <> - 31 "Transparent Cost Database." OpenEI, NREL Strategic Energy Analysis Center, ReEDS Model. 2008. <http://en.openei.org/wiki/Transparent_Cost_Database>> - ³² Chase, Jenny. "Q2 2013 PV Market Outlook." Bloomberg New Energy Finance. May 13, 2013. - ³³ "Renewable Energy Cost Database." Environmental Protection Agency. Last modified on October 26, 2012. <<http://www.epa.gov/cleanenergy/energy-resources/renewabledatabase.html>> - ³⁴ Cost and Performance Data for Power Generation Technologies. Black & Veatch, prepared for the National Renewable Energy Laboratory. February 2012. <http://bv.com/docs/reports-studies/nrel-cost-report.pdf> - ³⁵ Chase, Nicholas. "Annual Energy Outlook 2014: transportation modeling updates and preliminary results." U.S. Energy Information Administration. 2013. Spreadsheet data from personal correspondence. - ³⁶ Sun, Shu. "Lithium-ion battery cost forecast." Bloomberg New Energy Finance. July 3, 2013. Spreadsheet data from personal correspondence. - ³⁷ "The Lithium Ion Inflection Point: Advanced Batteries and the Coming Boom in the Global Li-ion Market." Navigant Research. November 5, 2013 webinar. <<http://www.navigantresearch.com/webinar/the-lithium-ion-inflection-point>> - ³⁸ Goldie-Scot, Logan. "2013 Advanced Energy Storage Cost Outlook." Bloomberg New Energy Finance. November 15, 2013. - ³⁹ Ardani, Kristen, et al. *Non-Hardware ("Soft") Cost-Reduction Roadmap for Residential and Small Commercial Solar Photovoltaics*, 2013–2020. National Renewable Energy Laboratory. August 2013. <http://www.nrel.gov/docs/fy13osti/59155.pdf> - 40 http://www1.eere.energy.gov/solar/sunshot/index. html - ⁴¹ Brown, Rich, et al. *U.S. Building-Sector Energy Efficiency Potential*. Lawrence Berkeley National Laboratory. September 2008. <http://buildings.lbl.gov/sites/all/files/lbnl-1096e.pdf> - ⁴² Poole, Claire. "The Deal: NRG Yield to Price IPO." *The Street.* July 17, 2013. Accessed January 4, 2014. <http://www.thestreet.com/story/11980468/1/the-deal-nrg-yield-to-price-ipo.html> - ⁴³ "Locational Value Map (LVM) for Oahu." Hawaiian Electric Company. Accessed November 21, 2013. <http://www.heco.com/portal/site/heco/lvmsearch>> - ⁴⁴ Brown, Rich, et al. *U.S. Building-Sector Energy Efficiency Potential*. Lawrence Berkeley National Laboratory. September 2008. <http://buildings.lbl.gov/sites/all/files/lbnl-1096e.pdf> - ⁴⁵ "National Income and Product Account Table." Bureau of Economic Analysis. Accessed September 2013. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product. <http://www.bea.gov/national/nipaweb/Index.asp> - ⁴⁶ Chase, J. "PV Market Outlook Q2 2013." Bloomberg New Energy Finance. May 13, 2013. Figure 18 and 19: Forecast fixed-axis PV capex, 2010-2030. - ⁴⁷ "Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States." Open EI, Developed at the National Renewable Energy Laboratory and made available under ODC-BY 1.0 Attribution License. 2013. <http://en.openei.org/datasets/node/961>